首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过在铝热剂中引入ZrO2与Y2O3混合粉末,借助燃烧合成及远离平衡态下的共晶生长,制备出以t-ZrO2纳微米纤维成排镶嵌于其上、长径比为12.0~15.0且具有不同生长取向的Al2O3棒晶为基体的Al2O3/YSZ共晶复合陶瓷.相比于定向凝固Al2O3/YSZ共晶复合陶瓷,因本试验具有的高共晶生长速率,导致Al2O3棒晶上的ZrO2正方相纳微米纤维平均尺寸及相间距均下降至150nm,使棒晶基体上的残余压应力高于定向凝固Al2O3/YSZ共晶复合陶瓷,从而在棒晶内高密度低能异相界面的支持下,复合陶瓷得以强化;同时,也正因高强度棒晶及高密度、大角度晶界的存在,在裂纹扩展中诱发棒晶裂纹桥接、拔出及α-Al2O3片晶摩擦互锁增韧机制,材料又得以明显韧化,其断裂韧度高出定向凝固共晶复合陶瓷172%~240%.  相似文献   

2.
在铝热剂中引入不同量ZrO2(3Y)微米粉末,以燃烧合成技术,制备出A12O3/10%、17%、21%、27%、33%ZrO2(3Y)系列成分自生复合陶瓷棒材.XRD分析与SEM观察显示:具有亚共晶成分的陶瓷熔体因以离异共晶方式生长,使得凝固后的陶瓷基体主要由α-A12O3片晶、t-ZrO2枝晶或块晶组成;而随ZrO2(3Y)添加量的增多,陶瓷晶体生长方式又由离异共晶向共生共晶生长发生转化,共晶棒晶体积分数增多,使得A12O3/33%ZrO2(3Y)的陶瓷基体以微米、亚微米t-ZrO2纤维镶嵌其上的A12O3共晶棒晶和少量α-A12O3片晶构成.经力学性能测试,系列陶瓷棒材的硬度与断裂韧度随ZrO2(3Y)添加量增多而逐渐升高,陶瓷棒材硬度最高值达15.7GPa,断裂韧度最高可达10MPa·m1/2.  相似文献   

3.
以陶瓷纺织剪刀为应用目标。开发成功ZrO2/Al2O3复相陶瓷材料,并对其微观结构和力学性能进行了研究。结果表明。随着Al2O3含量的增加,材料晶粒逐渐减小,材料中t相ZrO2的含量呈上升趋势。这有利于材料断裂韧度和横向断裂强度的提高;当Al2O3含量(质量分数)为20%左右时,ZrCh/Al2O3复相陶瓷材料的综合力学性能最佳。  相似文献   

4.
Al2O3+TiB2复相陶瓷材料具有高硬度、高熔点、高导热、低膨胀系数、高耐磨性、高温化学稳定性等优良的性能,但由于两种材料都属于硬而脆的材料,复合后仍然存在脆性大、裂纹敏感性强、抗机械冲击性和温度急变形差等缺点.为了克服这些缺点,在陶瓷相中添加金属间化合物(NiAl或FeAl).X射线衍射结果表明,合成产物的主要组成相分别为Al2O3+TiB2、Al2O3+TiB2+NiAl及Al2O3+TiB2+FeAl,进行燃烧合成反应.通过对不同成分反应产物的相对密度、强度、断裂韧度对比,可知产物的相对密度在FeAl含量为15%时达到最高99.5%,Al2O3+TiB2+NiAl体系中在NiAl含量为20%时达到最高98.5%.随着金属间化合物含量的增加,合成复合材料的硬度下降,而断裂韧度提高.  相似文献   

5.
Ti-B-C体系复相陶瓷的制备及性能研究   总被引:1,自引:0,他引:1  
以Ti、B和C粉末为原料,采用自蔓延高温合成工艺制备了不同组份的TiC-TiB2复相陶瓷.分析了不同TiB2含量材料的力学性能、断口形貌和裂纹扩展情况,研究表明:TiC-TiB2复相陶瓷比其单相陶瓷材料的断裂韧度有较大提高,当n(TiB2):n(TiC )= 56.4:43.6,该复相陶瓷的弯曲强度和断裂韧度达到最大值,且相对密度高达99.4%;长棒状TiB2颗粒能有效改善材料的断裂韧度和强度,其强化机理主要为裂纹偏转和拔出效应.  相似文献   

6.
将金属Al、Al3Ti和TiC以AlTiC中间合金的形式以及ZrO2颗粒共同引入Al2O3基体材料中,热压制备了Al2O3/TiC/ZrO2/AlN复合材料.在此基础上,添加(体积分数)1%透辉石作为烧结助剂,以实现复合材料的液相烧结并促进其致密化程度.复合材料在烧结过程中有新相AlN生成;同时Al、TiC以及Al3Ti释放的Ti原子发生原子重组生成Al2Ti4C.对热压后材料的硬度、断裂韧度和抗弯强度进行了测试和分析;探讨了透辉石对材料致密化程度及力学性能的影响效果;研究了复合材料断面断裂方式的变化对其力学性能的影响;并对AlTiC中间合金的细化特性进行了分析.  相似文献   

7.
通过在铝热剂中添加一定含量的微米ZrO2(3Y)粉末,以铝热燃烧、陶瓷/金属液相分离与熔体自生方式,制备出以t-ZrO2纳微米纤维镶嵌于其上且具有不同结构取向的蓝宝石棒晶为基的Al2O3/20%ZrO2(3Y)复合陶瓷,并结合力学性能测试,研究材料显微结构、裂纹扩展与增韧之间的内在联系.研究得出,陶瓷抗弯强度与断裂韧性分别达到1 086MPa与11.6 MPa·m05;存在于蓝宝石棒晶上大量、细密的低能异相界面(相界面间距为纳微米尺度)及高的残余压应力,使蓝宝石棒晶得以补强;具有高强度、高模量且长径比为6.0~8.0的蓝宝石棒晶及分布于其上的高残余压应力又迫使裂纹沿棒晶边界扩展,诱发裂纹偏转、棒晶桥接与拔出增韧机制,并相继伴随着t-ZrO2相变、α-Al2O3片晶桥接、Cr颗粒延性相塑变及相变诱发微裂纹多重增韧机制的协同作用,保证材料在保持高强度的同时,又具有高韧性与高的缺陷容忍性.  相似文献   

8.
鉴于在ZrO2中加入Y2O3做稳定剂可有效提高ZrO2陶瓷的高温相稳定性,以ZrOCl2.8H2O和YCl3为原料,聚乙二醇(PEG)为分散剂,采用反向共沉淀法制备出Y2O3-ZrO2陶瓷粉末.利用XRD、SEM、DSC-TG、BET和激光粒度衍射对Y2O3-ZrO2粉末进行性能表征.结果表明:Y2O3-ZrO2粉末在800 ℃煅烧后的平均晶粒尺寸为25.2 nm,采用喷雾干燥得到的粉末球形度好,粒度分布窄;加入适量分散剂能较好地抑制颗粒团聚.  相似文献   

9.
新型模具材料的开发是当前模具研究领域的重要内容之一.采用热压工艺制备了一种模具用Ti(C,N)/Al2O3复相陶瓷材料,并研究了该材料的制备工艺、微观结构和力学性能.研究表明以稀土氧化物为添加剂,Ti(C,N)/Al2O3陶瓷材料具有良好的微观结构和力学性能.抗弯强度、断裂韧度和硬度分别达到980 Mpa、6.0 Mpa·m1/2和19.2 Gpa,分别比纯Al2O3陶瓷材料提高96%、57%和5%.材料的增韧机理主要是裂纹桥联、裂纹偏转、裂纹分支以及部分纳米Ti(C,N)晶粒的晶内断裂机制.  相似文献   

10.
采用工业ZrO2和AlO3为原料,以Y2O3作为稳定剂,通过适当工艺制备出ZrO2增韧Al2O3(ZTA)陶瓷.主要研究了ZrO2和Y2O3稳定剂对ZTA陶瓷烧结性和抗钢液腐蚀性能的影响.实验结果表明:机械混合法引入的Y2O3在改善ZTA陶瓷的烧结性的同时,可以提高材料的抗钢液腐蚀性能;随ZrO2含量的增加,ZTA陶瓷的抗钢液腐蚀性能增强;材料中大量微裂纹的存在可以提高材料的韧性,但抗钢液腐蚀性能有所下降.  相似文献   

11.
利用综合热分析仪研究了O2/N2与O2/CO2气氛下Fe2O3与K2CO3对无烟煤催化燃烧反应性的影响。结果表明,在O2/CO2气氛下,Fe2O3与K2CO3均可以催化无烟煤粉的燃烧,但其催化作用要弱于O2/N2气氛,且在低氧气浓度的O2/CO2气氛下对Fe2O3与K2CO3的抑制作用大于高氧气浓度。氧气浓度为20%~80%时,K2CO3在O2/N2气氛下催化煤粉前期燃烧使燃烧由反应控制转变为扩散控制,Fe2O3则只在氧气浓度为20%时能改变煤粉前期燃烧的控制步骤;而Fe2O3与K2CO3在O2/CO2气氛下均只能在氧气浓度为20%时改变煤粉前期燃烧的控制步骤,由反应控制转变为扩散控制。  相似文献   

12.
以含PdCl_3SC(NH_2)_2~-溶液为原料,采用Fe-H_2O_2还原法回收溶液中的钯,研究了还原过程的机理,考察了pH、还原时间、H_2O_2用量和铁粉用量对还原率的影响。结果表明,铁粉被氧化后的Fe~(2+)可催化H_2O_2而产生氧化能力极强的·OH自由基,该自由基对复杂的PdCl_3SC(NH_2)_2~-结构具有很强的破坏力,使稳定的PdCl_3SC(NH_2)_2~-以PdCl _4~(2-)形态分离出来,提高了铁对钯的还原性能。在溶液体积20mL,25℃,pH=2,H_2O_2用量0.10mL/mL,反应时间60min和铁粉用量0.50mg/mL的条件下,钯的平均还原率可达99.25%。  相似文献   

13.
MgO-CeO2复合载体负载Cu2O催化剂的性能研究   总被引:1,自引:1,他引:0  
采用柠檬酸燃烧法制备MgO-CeO2(10%,质量分数)复合载体和CeO2单载体,用浸渍还原法以水合肼为还原剂制备负载型Cu2O催化剂,以环己醇脱氢制环己酮为探针反应,考察其脱氧性能;采用TPR,XRD,CO2-TPD,环己酵/环己酮-TPD及BET等手段对催化剂进行表征.实验发现,与商品MgO和CeO2为载体的催化剂相比,复合载体负载的催化剂Cu2O/MgO-CeO2(10%)表现出更高的环己醇脱氢活性.这是由于复合载体负载的催化剂中CeO2的存在提高了催化剂的比表面积,有利于活性组分的分散;增强了催化剂中弱碱位的强度并增加了弱碱中心的数量.改变了催化剂的表面吸附能力,因而对环己醇脱氢具有更高的催化活性.3种催化剂都呈碱性,是其具有高环己酮选择性的原因之一.  相似文献   

14.
为揭示Nb2O5-Al2O3-MgO-Na2O-CaO-SiO2多元含铌炉渣体系中的铌矿物的定向结晶规律,采用高温相平衡—冷淬—SEM-EDS/XRD/EMPA试验方法,考察了温度、钙硅比(CaO/SiO2)、Nb2O5含量等因素对炉渣相平衡关系的影响,并构建了含铌矿物结晶析出的优势相图。结果表明:铌的结晶矿物主要有三种,分别为Ca2Nb2O7、Ca(14-x)Nb(2+x)Si8O(35+1.5x)和3CaO?MgO?Nb2O5;铌先富集于液相,相较于脉石组分,含铌固相为后析出相;CaO/SiO2增加会使含铌固相优势区间发生从Ca2Nb2O7相到Ca(14-x)Nb(2+x)Si8O(35+1.5x)相、再到3CaO?MgO?Nb2O5相的转变。Ca2Nb2O7相的优势析晶区间为:温度1 050~1 200 ℃,C/S=0.8~1.2。Nb2O5在Ca(14-x)Nb(2+x)Si8O(35+1.5x)相中的嵌布质量浓度在18.5%~19.5%。  相似文献   

15.
分别采用正交试验法和单因素试验法考察I_2-KI-H_2O_2体系下碘质量分数、n(I_2)/n(I~-)比值、双氧水用量、固液比对金溶解速率的影响程度,以及碘化钾质量分数、m(I_2)/m(I~-)比值、双氧水用量、溶液温度和溶液pH对金溶解时间的影响,然后对金溶解后的溶液进行稳定性测试。结果表明,各因素影响程度大小顺序依次为固液比、双氧水用量、n(I_2)/n(I~-)比值、碘质量分数。当碘化钾质量分数为0.2~0.25g/mL、m(I_2)/m(I~-)=1∶5~1∶4、双氧水用量0.7~0.9mL、温度室温、pH为原溶液状态时,金溶解速率最大,溶液的稳定性可以满足使用要求。  相似文献   

16.
运用XRD、SEM等方法研究了Al2O3-CeO2-ZrO2-Ni高能球磨体系在不同的球磨工艺条件下的组织结构转变和分散性的问题.结果表明,四种物质一起球磨时,不会发生机械合金化,但随着球磨时间的延长,Al2O3、CeO2、ZrO2粉末都会不断被细化,而Ni颗粒仍较粗大且分布很不均匀.通过改变球磨顺序,将CeO2、ZrO2和Ni先球磨30 h再添加Al2O3继续球磨30 h,却能使CeO2和ZrO2发生合金化生成固溶体,且Ni颗粒有明显的细化,分散性也明显提高.  相似文献   

17.
采用等温溶解法测定20、40和60℃条件下,NaOH-Na2SnO3-Na2PbO2-H2O四元水盐体系及边界三元水盐体系NaOH-Na2SnO3-H2O、NaOH-Na2PbO2-H2O的相平衡数据.结果表明,在三元体系中,锡酸钠的溶解度随碱度的升高而降低,在高碱度条件下,40℃溶解度较高,亚铅酸钠的溶解度随温度的升高而升高,而随碱度升高呈现S形变化;在四元体系中,锡酸钠、亚铅酸钠之间相互影响,但溶解度变化趋势与三元体系一致.该研究成果可为碱、锡、铅的分离提供基础数据.  相似文献   

18.
原位反应制备Mo_2FeB_2基金属陶瓷烧结过程热力学分析   总被引:1,自引:0,他引:1  
对Fe-6B-48Mo-0.8C材料体系用液相烧结原位反应法制备了Mo2FeB2三元硼化物金属陶瓷,用SEM-EDS观察分析了烧结体的组织结构与成分组成,用热分析(DSC)、X射线衍射分析与热力学计算表征了体系的反应过程。结果表明,在该材料体系中,Fe2B、MoB2为反应中间相,Mo2FeB2为最稳定存在的相,呈条块状均匀分布在铁基粘结相中。通过热力学计算分析,在Mo-Fe-B三元体系中,Mo2FeB2的Gibbs自由能最低,形成能力最强,在481.8℃开始形成Fe2B,当温度达到1293.7℃时,该体系形成最稳定的Mo2FeB2相,并使材料致密化。  相似文献   

19.
张晨  刘世洲 《炼钢》1998,14(3):47-50
通过回归正交设计确定了连铸保护渣基料挥发率同温度、Na2CO3含量、CaF2含量、减度及时间的二次函数关系式。分析结果表明,温度对挥发率的影响随着Na2CO3含量的增加而增加;碱度R为0.9时挥发率最大;Na2CO3对挥发率的影响略高于CaF2。  相似文献   

20.
针对高碱度高氧化铝的CaO-Al2O3-SiO2-TiO2-MgO-Na2O六元渣系,通过在1 773 K温度下测定其与铁液间的硫分配比,研究该渣系的脱硫性能.利用偏最小二乘法回归分析,建立了可较好预测硫分配比的回归方程,利用回归方程分析了炉渣碱度(mCao/msiO2)、MgO、TiO2、Al2O3以及Na2O对硫分配比的影响.结果表明,当炉渣碱度大于2.9时,炉渣硫分配比均在140以上,表明该渣系具有较强的脱硫能力.在实验范围内,硫分配比随炉渣碱度的增加而提高.当碱度一定时,MgO对硫分配比的影响不大,TiO2、Al2O3均使硫分配比降低,其中Al2O3降低硫分配比较为明显.硫分配比随Na2O增加而增加,少量的Na2O即可明显提高炉渣的脱硫能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号