首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents dosimetry based on the measurement of fluoro-DOPA activity in major tissues and in the bladder contents in humans after oral pretreatment with 100 mg carbidopa. METHODS: Bladder activity was measured continuously by external probe and calibrated using complete urine collections. Quantitative dynamic PET scans provided time-activity curves for the major organs. Bladder wall dosimetry was calculated using the methods of MIRD Pamphlet No. 14. Effective dose was calculated as described in ICRP Publication 60. RESULTS: Mean absorbed dose to the bladder wall surface per unit administered activity was 0.150 mGy/MBq (0.556 rad/mCi) with the realistic void schedule used in our studies. The dose was 0.027 mGy/MBq (0.101 rad/mCi) to the kidneys, 0.0197 mGy/MBq (0.0728 rad/mCi) to the pancreas, and 0.0186 mGy/MBq (0.0688 rad/mCi) to the uterus. Absorbed doses to other organs were an order of magnitude or more lower than the bladder, 0.009-0.015 mGy/MBq. The effective dose per unit administered activity was 0.0199 mSv/MBq (0.0735 rem/mCi.) CONCLUSION: Urinary excretion of fluoro-DOPA was altered significantly by pretreatment with carbidopa. In general, any manipulation of tracer metabolism in the body should be expected to produce changes in biodistribution and dosimetry. The largest radiation dose was to the bladder wall, for which our estimate was one-fifth of that from the original report. The methods used reflect realistic urinary physiology and typical use of this tracer. The principles of MIRD Pamphlet No. 14 should be used in planning studies using tracers excreted in the urine to minimize the absorbed dose.  相似文献   

2.
Cyclophosphamide (CY, 250 mg/kg) was intraperitoneally administered to mice. Four days after, a rifampicin-resistant strain of methicillin-resistant Staphylococcus aureus (MRSA, S. aureus 1-6 RFPr) was intravenously inoculated at the level of 10(7) cfu/mouse. Distribution and localization of the inoculated organism were chronologically investigated by means of whole body autobacteriography. CY (100 mg/kg) was consecutively administered for 4 days following the inoculation. As a result, dense colonies of the organism were detected from many organs and tissues, that is, the liver spleen, gastrointestinal tract, kidneys, urinary bladder and bone (bone marrow) on the day after the inoculation. Following 3 days after the inoculation, the distribution and localization in CY-treated mice remained substantially unchanged and some animals died. It is demonstrated that in an experimental mouse model of MRSA infectious disease under immunosuppressed condition, the inoculated organism can stand still and proliferate not only in the gastrointestinal tract but also in the urinary tract and lymphhemopoietic organs.  相似文献   

3.
Rhenium-186 is a beta-emitting radionuclide that has been studied for applications in radioimmunotherapy. Its 137 keV gamma photon is ideal for imaging the biodistribution of the immunoconjugates and for obtaining gamma camera data for estimation of dosimetry. Methods used for determining radiation absorbed dose are described. We have estimated absorbed dose to normal organs and tumors following administration of two different 186Re-labeled immunoconjugates, intact NR-LU-10 antibody and the F(ab')2 fragment of NR-CO-02. Tumor dose estimates in 46 patients varied over a wide range, 0.4-18.6 rads/mCi, but were similar in both studies. Accuracy of activity estimates in superficial tumors was confirmed by biopsy. Prediction of 186Re dosimetry from a prior 99mTc imaging study using a tracer dose of antibody was attempted in the NR-CO-02 (Fab')2 study. Although 99mTc was an accurate predictor of tumor localization and the mean predicted and observed radiation absorbed doses to normal organs compared favorably, 186Re dosimetry could not be reliably predicted in individual patients. The methods described nevertheless provide adequate estimates of 186Re dosimetry to tumor and normal organs.  相似文献   

4.
We present biodistribution and dosimetry results for 64Cu-benzyl-TETA-MAb 1A3 from 15 human subjects injected with this tracer as determined by serial PET imaging of the torso. METHODS: PET imaging was used to quantify in vivo tracer biodistribution at two time points after injection. Absorbed dosimetry calculated using MIRD-11 and the updated MIRDOSE3 was compared with estimates obtained using rat biodistribution data. RESULTS: By measuring activity concentrations in the torso, and extrapolating for the whole body using standard organ and tissue volumes, we were able to account for 93% of the injected radiopharmaceutical over a range of imaging times from 0 to 36 hr postinjection. Based on PET imaging and the MIRD-11 schema, the liver and spleen are the critical organs with average absorbed doses of 0.12 and 0.10 mGy/MBq (0.44 and 0.39 rad/mCi). The revised MIRDOSE3 scheme yields similar values for these and other organs but also results in a dose of 0.14 mGy/MBq (0.53 rad/mCi) to the heart wall. In the rat, the large intestine is the critical organ at 0.14 mGy/MBq (0.52 rad/mCi), while liver and kidneys each receive 0.11 mGy/MBq (0.41 rad/mCi). Some disparities in absorbed doses determined by these methods are evident but are a result of dissimilar biodistributions in rats and humans. For most organs, rat extrapolated values are higher than the human measurements with PET. CONCLUSION: This study shows that torso PET imaging can quantitatively measure the whole-body biodistribution of a radiopharmaceutical as long as it has relatively slow pharmacokinetics.  相似文献   

5.
Imaging with radiolabeled somatostatin/vasoactive intestinal peptide analogs has recently been established for the localization diagnosis of a variety of human tumors including neuroendocrine tumors, intestinal adenocarcinomas and lymphomas. This study reports on the biodistribution, safety and radiation absorbed dose of 111In-1,4,7,10-tetraazacyclododecane-N,N',N",N'-tetraacetic acid (DOTA)-lanreotide, a novel peptide tracer, which identifies hSST receptor (R) subtypes 2 through 5 with high affinity, and hSSTR1 with low affinity. METHODS: The tumor localizing capacity of 111In-DOTA-lanreotide was initially investigated in 10 patients (3 lymphomas, 5 carcinoids and 2 intestinal adenocarcinomas). Indium-111 -DOTA-lanreotide was then administered to 14 cancer patients evaluated for possible radiotherapy with 90Y-DOTA-lanreotide (8 neuroendocrine tumors, 4 intestinal adenocarcinomas, 1 Hodgkin lymphoma and 1 prostate cancer). After intravenous administration of 111In-DOTA-lanreotide (approximately = 150 MBq; 10 nmol/patient), sequential images over one-known tumor site were recorded during the initial 30 min after peptide application. Thereafter, whole-body images were acquired in anterior and posterior views up to 72 hr postinjection. Dosimetry calculations were performed on the basis of scintigraphic data, urine, feces and blood activities. A comparison with 111In-DTPA-D-Phe1-octreotide (111In-OCT) scintigraphy was performed in 8 of the patients. RESULTS: After an initial rapid blood clearance [results of biexponential fits: T(eff1) 0.4 min (fraction a1 80%) and T(eff2) 13 min (fraction a2 14%)], the radioactivity was excreted into the urine and amounted to 42% +/- 3% of the injected dose (%ID) within 24 hr and 62% +/- 6%ID within 72 hr after injection of 111In-DOTA-lanreotide. In all patients, tumor sites were visualized during the initial minutes after injection of 111In-DOTA-lanreotide. The mean radiation absorbed dose amounted to 1.2 (range 0.21-5.8) mGy/MBq for primary tumors and/or metastases. The effective half-lives of 111In-DOTA-lanreotide in the tumors were T(eff1) 4.9 +/- 2.2 and T(eff2) 37.6 +/- 6.6 hr, and the mean residence time tau was 1.8 hr. The highest radiation absorbed doses were calculated for the spleen (0.39 +/- 0.13 mGy/MBq), kidneys (0.34 +/- 0.08 mGy/MBq), urinary bladder (0.21 +/- 0.03 mGy/MBq) and liver (0.16 +/- 0.04 mGy/MBq). The effective dose was 0.11 +/- 0.01 (range 0.09-0.12) mSv/MBq. During the observation period of 72 hr, no side effects were noted after 111In-DOTA-lanreotide application. The 111In-DOTA-lanreotide radiation absorbed tumor dose was significantly higher (ratio 2.25 +/- 0.60, p < 0.01) when directly compared with 111In-OCT. CONCLUSION: Indium-111 -DOTA-lanreotide shows a high tumor uptake for a variety of different human tumor types, has a favorable dosimetry over 111In-OCT and is clinically safe.  相似文献   

6.
In the treatment of neural crest tumors, such as pheochromocytoma, with[131I]MIBG, bone marrow toxicity limits the amount of administered activity and, thus, a therapeutically useful tumor dose. METHODS: We calculated tumor doses in a series of diagnostic studies with [123I]MIBG using accurate quantification of SPECT and planar scintigraphy. By extrapolating diagnostic results to therapeutic activities of [131I]MIBG, we could compare the results with whole-body doses from a series of therapies. RESULTS: The tumor dose was DT = 2.2 mGy MBq(-1) (median value of 27 measurements, range 0.04 < or = DT < or = 20 mGy MBq(-1) and the whole-body dose in a series of 16 patients undergoing 50 therapies was DWB = 0.12 +/- 0.04 mGy MBq(-1) (mean +/- s.d.). The therapeutic ratio varied between 130 to below 10 in some patients. CONCLUSION: The results were compared with published data. We found clearly skewed distribution of tumor doses, with a majority of tumors receiving only a few mGy per MBq administered activity. In some patients, however, doses did reach 20 mGy MBq(-1).  相似文献   

7.
Pentavalent rhenium-188 dimercaptosuccinic acid [188Re(V)DMSA] is a beta-emitting analogue of 99mTc(V)DMSA, a tracer that is taken up in a variety of tumours and bone metastases. The aim of this study was to develop the kit-based synthesis of the agent on a therapeutic scale, to assess its stability in vivo, and to obtain preliminary biodistribution and dosimetry estimates, prior to evaluation of its potential as a targeted radiotherapy agent. The organ distribution of 188Re in mice was determined 2 h after injection of 3 MBq 188Re(V)DMSA prepared from eluate from a 188W/188Re generator. Three patients with cancer of the prostate and three with cancer of the bronchus, all with bone metastases confirmed with a standard 99mTc-hydroxymethylene diphosphonate (99mTc-HDP) scan, were given 370 MBq 188Re(V)DMSA and imaged at 3 h and 24 h using the 155-keV gamma-photon (15%). Blood and urine samples were collected to determine clearance and to analyse the speciation of 188Re. Organ residence times were estimated from the scans, and used to estimate radiation doses using MIRDOSE 3. In mice, 188Re(V)DMSA was selective for bone and kidney. In patients, it showed selectivity for bone metastases (particularly those from prostate carcinoma) and kidney, but uptake in normal bone was not significantly greater than in surrounding soft tissues. Of the normal tissues the kidneys received the highest radiation dose (0.5-1.3 mGy/MBq). The images were strongly reminiscent of 99mTc(V)DMSA scans in similar patients. High-performance liquid chromatography analysis of blood and urine showed no evidence of 188Re in any chemical form other than 188Re(V)DMSA up to 24 h. In conclusion, 188Re(V)DMSA and its 186Re analogue warrant further clinical assessment as generator/kit-derived agents for treatment of painful bone metastases. These agents should also be assessed in medullary thyroid carcinoma and other soft tissue tumours which have been shown to accumulate 99mTc(V)DMSA.  相似文献   

8.
We evaluated the in vivo stability and biodistribution of four isomers (CHX-A', CHA-A", CHX-B' and CHX-B") of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriaminepentaaceti c acid (CHX-DTPA), a recently developed backbone-substituted derivative of DTPA. METHODS: The ligands were conjugated to monoclonal antibody B3, a murine IgG1 kappa, and labeled with 88Y at 55.5-66.6 MBq/mg (1.5-1.8 mCi/mg). Nontumor-bearing nude mice were injected intravenously with 55.5-66.6 kBq (1.5-1.8 microCi) of 88Y-labeled B3 conjugates and with 125I-labeled B3 as an internal control. The mice were then killed at 6, 24, 48, 96 and 168 hr postinjection. RESULTS: At 168 hr, the concentration of 88Y in processed bone of either CHX-A' [4.6% injected dose (ID)/g] or CHX-A" (4.0%ID/g) was less than that of either the CHX-B' (21.9%ID/g) or B" (12.1%ID/g) ligands. The two ligands CHX-B" and CHX-B' were not acceptable for yttrium labeling of antibody because of their high and progressive bone accumulation. The accumulation of 88Y in bone of CHX-B' was five times greater than that of CHX-A' at 168 hr. The CHX-A" cleared from the circulation slightly faster than CHX-A' without releasing the yttrium and showed the lowest uptake by bone of any of the four isomers. The accumulation in the other normal organs was similar for all four isomers of 88Y-CHX-B3 conjugates. CONCLUSION: Although the CHX-B" and CHX-B' were not acceptable for labeling with yttrium, the CHX-A' and CHX-A" were suitable, indicating that differences in stereochemistry can greatly influence stability of radionuclide in the chelate.  相似文献   

9.
Bone marrow is the primary dose-limiting organ in radioimmunotherapy. Athymic nude mouse models are used to guide radioimmunotherapy in humans. In the mouse, the dimensions of the marrow are comparable to the mean range of the beta particles for a wide variety of beta-emitting radionuclides, so local beta energy deposition cannot be assumed. METHODS: We have developed a computer simulation model in which slab, spherical and cylindrical geometries of the bone marrow of the mouse were incorporated. The energy deposition within the marrow was estimated using beta dose point kernels for several beta-emitting radionuclides. RESULTS: The calculated percentages of energy deposited in the mouse marrow using the full geometry were 46%, 24% and 10% for 131I-, 186Re- and 90Y-radiolabeled antibodies, respectively. Assuming a concentration of activity in the marrow of 0.36 times the blood activity concentration, the percentages of energy deposition in the marrow from marrow and whole-body sources were 61%, 40% and 29% for 131I, 186Re and 90Y, respectively. CONCLUSION: This work shows that, even for the lower mean beta energy-emitting radionuclide, such as 131I, accurate computation of the mouse bone marrow dose involves including both the energy loss from beta decays within the marrow and dose contributions from tissue surrounding the marrow.  相似文献   

10.
This study presents data on the dynamic distribution and dosimetry of 111In- and 99Tcm-labelled human non-specific immunoglobulin G (IgG), two recently developed radiopharmaceuticals for the detection of infection and inflammation. Five healthy volunteers were injected with 20-75 MBq 111In-IgG and seven patients were injected with 740 MBq 99Tcm-hydrazinonicotinamide derivative (HYNIC)-IgG. Blood samples, urine and feces were collected. Whole-body gamma camera imaging studies were performed. The activity in source organs was quantified using the conjugate view counting method and a partial background subtraction technique. Dosimetric calculations were performed using the MIRD technique. For 111In-IgG, the mean biological half-times in the blood were 0.90 and 46 h for the a- and b-phase, respectively. For 99Tcm-HYNIC-IgG, these half times were 0.46 and 45 h. For 111In-IgG, the mean cumulative urinary excretion in the first 48 h was 18% of the injected dose, while excretion in the feces was less than 2% of the injected dose. For 99Tcm-HYNIC-IgG, the whole-body retention was always 100% up to 24 h. The mean absorbed doses in the liver, spleen, kidneys, red marrow and testes from 111In-IgG were 0.8, 0.7, 1.2, 0.3 and 0.4 mGy MBq-1 respectively. The mean absorbed doses for 99Tcm-HYNIC-IgG to these organs were 16, 24, 15, 10 and 22 mu Gy MBq-1 respectively. The mean effective dose was 0.25 mSv MBq-1 and 8.4 mu Sv MBq-1 for 111In-IgG and 99Tcm-HYNIC-IgG respectively. In conclusion, the radiation absorbed doses for both 111In-IgG and 99Tcm-HYNIC-IgG are low and, therefore, these radiopharmaceuticals can be administered safely from a radiation risk perspective.  相似文献   

11.
Fluoromisonidazole (FMISO), labeled with the positron emitter 18F, is a useful hypoxia imaging agent for PET studies, with potential applications in patients with tumors, cardiovascular disease and stroke. METHODS: Radiation doses were calculated in patients undergoing imaging studies to help define the radiation risk of FMISO-PET imaging. Time-dependent concentrations of radioactivity were determined in blood samples and PET images of patients following intravenous injection of [18F]FMISO. Radiation absorbed doses were calculated using the procedures of the Medical Internal Radiation Dose (MIRD) committee, taking into account the variation in dose based on the distribution of activities observed in the individual patients. As part of this study we also calculated an S value for brain to eye. Effective dose equivalent was calculated using ICRP 60 weights. RESULTS: Effective dose equivalent was 0.013 mSv/MBq in men and 0.014 mSv/MBq in women. Individual organ doses for women were not different from men. Assuming bladder voiding at 2- or 4-hr intervals, the critical organ that received the highest dose was the urinary bladder wall (0.021 mGy/MBq with 2-hr voiding intervals or 0.029 mGy/MBq with 4-hr voiding intervals). CONCLUSION: The organ doses for [18F]FMISO are comparable to those associated with other commonly performed nuclear medicine tests and indicate that potential radiation risks associated with this study are within generally accepted limits.  相似文献   

12.
Stability and immunoreactivity of 186Re-labeled monoclonal antibody were examined, and its in vivo kinetics was investigated in tumor-bearing Balb/c nu/nu female mice to assess the feasibility of using it in radioimmunotherapy (RIT). A murine IgG1, A7, against a 45 kD glycoprotein in human colon cancer was radiolabeled with 186Re by using a chelating method with a mercaptoacetyltriglycine (MAG3). 186Re-MAG3 complex was conjugated to A7 after esterification of 186Re-MAG3 with tetrafluorophenol (TFP). The efficiency of 186Re-MAG3-TFP production and the labeling efficiency of A7 were 51-59% and 57-60%, respectively. Immunoreactivity of purified 186Re-MAG3-A7 was 68.2% at infinite antigen excess. In 0.9% NaCl at 4 degrees C, the radioactivity (12.7 MBq/mg, 3.55 MBq/ml) dissociated with time from 186Re-MAG3-A7 as a small molecular weight moiety because of autoradiolysis. The addition of ascorbic acid, 5 mg/ml, as a radioprotectant or storage at -80 degrees C could effectively prevent the radiolysis of 186Re-MAG3-A7 for 7 days. Immunoreactivity of 186Re-MAG3-A7, 6.70 MBq/mg (6.66 MBq/ml), stored in the presence of ascorbic acid was well retained up to 8 days after the preparation. In colon cancer xenografted mice, 31.0% of the injected dose/g of 186Re-MAG3-A7 had accumulated in the tumors at 24 h postinjection. Estimated radiation dose to tumors was 14.9 cGy/37 kBq up to 8 days postinjection which was 12-fold greater than the whole-body radiation dose. These in vivo characteristics were superior to those of A7 labeled with radioiodine, affording greater therapeutic ratios than 131I-A7. Because of the better image quality of 186Re-MAG3-A7 as well as more favorable dosimetry, 186Re-MAG3-A7 would be a better choice for RIT of colon cancer than 131I-A7. These results indicated the feasibility of RIT with 186Re-MAG3-A7, though the prevention of radiolysis of the labeled antibody should be considered.  相似文献   

13.
Thrombocytopenia is often the dose-limiting toxicity for radionuclide therapy. Prediction of platelet counts after therapy is important for treatment planning. Simple prediction methods based on linear correlation between radiation dose and blood count nadir have been insufficient because they have not considered time, because of the complicated hierarchical structure of the hematopoietic system in which platelets are not directly injured by low dose rate radiation and because of changing radiation dose rates to marrow with time. This study addresses these problems using a cell kinetics model. METHODS: The model consists of compartments for progenitor cells, megakaryocytes, platelets and stromal cells. A linear quadratic formula was used for progenitor cell survival. Stromal cells were described by a model based on a maximum likelihood estimate for cellular damage, repair and proliferation. Reported values for murine cellular turnover rates and radiosensitivity of progenitor cells were used in the model calculations. Experimental mice received 4 Gy of external beam radiation for tumor implantation and 12.4-23.3 MBq 67Cu-2-iminothiolane-BAT-Lym-1 (BAT = 6-[p-(bromoacetamido) benzyl]-1,4,8,11-tetra-azacyclotetradecane-N,N',N',N'-tetraacet ic acid) 19-30 days later. Blood counts were measured three times each week. RESULTS: The model predicted the severity of thrombocytopenia, and the time of the nadir corresponded to measured values in mice. For a dose of 14.2 MBq 67Cu-2-iminothiolane-BAT-Lym-1 that induced a platelet nadir of 20% of baseline (Grade II), the model predicted that at least 20 days were needed before a second 14.2-MBq injection if a subsequent nadir of <10% of baseline (Grade IV) was to be avoided. CONCLUSION: The nadir and duration of thrombocytopenia predicted by the model were similar to those observed in the mice. Predicted information could be useful for planning the dose and timing of fractionated radionuclide therapy. This model provides a stepping stone for future development of a predictive model for patients.  相似文献   

14.
The biodistribution and kinetics of an air filled human serum albumin microcapsule formulation (Quantison) intended for use as an intravenous ultrasound contrast agent have been examined. 12 healthy subjects were administered with approximately 50 million microcapsules per kilogram body weight, radiolabelled with 50 MBq 123I. Imaging was performed over a period of 58 h using a large field-of-view gamma camera and the amount of labelled material present in the blood, urine and faeces measured. Imaging demonstrated that the liver was the organ with the highest uptake, with a mean uptake of 41.8% (SD 10.4%) of the administered dose 1 h following administration. The maximum uptake of the agent in the lungs was low, mean 4.0% (SD 3.4%). A small amount of uptake was visible in the bone marrow; however, this was not quantifiable. There was also evidence of minimal myocardial activity within 5 min of administration. No adverse events were observed and there were no changes in any of the individual post-study indices. The present study demonstrates the safety of Quantison. Gamma scintigraphy played a useful role in confirming the biodistribution of the agent with little lung uptake, high liver uptake and evidence of myocardial uptake.  相似文献   

15.
Objective: The aim of this study was to compare bone marrow-sparing intensity-modulated radiotherapy (IMRT)with IMRT without entering pelvic bone marrow as a planning constraint in the treatment of cervical cancer after hysterectomy. Methods: For a cohort of 10 patients, bone marrow-sparing IMRT and routine IMRT planning were designed. Theproscribed dose was 45 Gy/1.8 Gy/25f, 95% of the planning target volume received this dose. Doses were computed with a commercially available treatment planning system (TPS) using convolution/superimposition (CS) algorithm. Plans were compared according to dose-volume histogram (DVH) analysis in terms of planning target volume (PTV) homogeneity and conformity indices (HI and CI) as well as organs at risk (OARs) dose and volume parameters. Results: Bone marrow-sparing IMRT had an vantages over routine IMRT in terms of CI, but inferior to the latter for HI. Compared with routine IMRT, V5,V10, V20, V30, V40 of pelvic bone marrow of bone marrow-sparing IMRT reduced by 1.81%, 8.61%, 31.81%, 29.50%, 28.29%,respectively. No statistically significant differences were observed between bone marrow-sparing IMRT and routine IMRT in terms of small bowel, bladder and rectum. Conclusion: For patients with cervical cancer after hysterectomy, bone marrowsparing IMRT reduced the pelvic bone marrow volume irradiated at all dose levels and might be conducive to preventing the occurrence of acute bone marrow toxicity.  相似文献   

16.
Estimates of radiation absorbed dose to the red marrow (RM) would be valuable in treatment planning for radioimmunotherapy if they could show a correlation with clinical toxicity. In this study, a correlation analysis was performed to determine whether estimates of radiation absorbed dose to the bone marrow could accurately predict marrow toxicity in patients who had received 186Re-labeled monoclonal antibody. METHODS: White blood cell and platelet count data from 25 patients who received 186Re-NR-LU-10 during Phase I radioimmunotherapy trials were analyzed, and the toxicity grade, the fraction of the baseline counts at the nadir (percentage baseline) and the actual nadir were used as the indicators of marrow toxicity. Toxicity was correlated with various predictors of toxicity. These predictors included the absorbed dose to RM, the absorbed dose to whole body (WB) and the total radioactivity administered. RESULTS: Percentage baseline and grade of white blood cells and platelets all showed a moderate correlation with absorbed dose and radioactivity administered (normalized for body size). The percentage baseline platelet count was the indicator of toxicity that achieved the highest correlation with the various predictors of toxicity (r = 0.73-0.79). The estimated RM absorbed dose was not a better predictor of toxicity than either the WB dose or the total radioactivity administered. There was substantial variation in the blood count response of the patients who were administered similar radioactivity doses and who had similar absorbed dose estimates. CONCLUSION: Although there was a moderately good correlation of toxicity with dose, the value of the dose estimates in predicting toxicity is limited by the patient-to-patient variability in response to internally administered radioactivity. In this analysis of patients receiving 186Re-labeled monoclonal antibody, a moderate correlation of toxicity with dose was observed but marrow dose was of limited use in predicting toxicity for individual patients.  相似文献   

17.
This paper reports the determination of absorbed dose to bone marrow in the treatment of polycythaemia by 32P, based on the measurement of activities in bone and marrow biopsies taken at various times from 1 to 27 days after injection of the radionuclide. Activities were measured in the cortex, trabeculation and marrow of biopsies taken from the iliac crest, and slso in sternal marrow. The biological half-life of 32P in marrow from the iliac crest was found to be nine days; that derived for sternal marrow was lower, but the difference was not statistically significant; the value for trabecular bone was 27 days. The biological half life for 32P in the body, as measured by whole-body counting, was 39 days. Calculations of the dose-rate to trabecular marrow have been made by a method based on that of Whitwell and Spiers (1971), but modified to allow for the presence of32P in the marrow as well as in trabecular bone. The dose-rates follow a single exponetial decay with a half-life of 6.7 days. The intergrated dose including that during the first day is 24 rad per mCi injected.  相似文献   

18.
Myelotoxicity is the dose-limiting factor in radioimmunotherapy. Traditional methods most commonly used to estimate the radiation adsorbed dose to the bone marrow of patients consider contributions from radionuclide in the blood and/or total body. Targeted therapies, such as radioimmunotherapy, add a third potential source for radiation to the bone marrow because the radiolabeled targeting molecules can accumulate specifically on malignant target cells infiltrating the bone marrow. A non-invasive method for estimating the radiation absorbed dose to the red marrow of patients who have received radiolabeled monoclonal antibodies (MoAb) has been developed and explored. The method depends on determining the cumulated activity in three contributing sources: 1) marrow; 2) blood; and 3) total body. The novel aspect of this method for estimating marrow radiation dose is derivation of the radiation dose for the entire red marrow from radiation dose estimates obtained by detection of cumulated activity in three lumbar vertebrae using a gamma camera. Contributions to the marrow radiation dose from marrow, blood, and total body cumulated activity were determined for patients who received an I-131 labeled MoAb, Lym-1, that reacts with malignant B-lymphocytes of chronic lymphocytic leukemia and nonHodgkin's lymphoma. Six patients were selected for illustrative purposes because their vertebrae were readily visualized on lumbar images. The radiation doses to the marrow contributed by nonpenetrating emissions in the marrow blood and penetrating emissions in the total body were similar in these patients with a mean of 0.2 and 0.3 rads per administered mCi from the blood and total body, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To evaluate whether the in vivo mutagenicity test system using the lacZ transgenic mice (Muta Mouse) may be applied to carcinogenesis studies, both the in vivo mutagenicity and carcinogenicity of benzo[a]pyrene (BP) was tested in mice under the same administration conditions. The eleven organs of the mice on the 14th day after the final oral administration of BP at a dose of 125 mg kg(-1) day(-1) or corn oil for 5 consecutive days were tested for in vivo mutation by the positive-selection method. The data show that the colon had the highest lacZ mutant frequency (37-fold increase over the spontaneous frequency), followed by the ileum > forestomach > bone marrow, spleen > glandular stomach > liver, lung > kidney and heart. No significant mutations were found in the brain. These results may suggest that, in general, the organs with rapidly proliferative tissues have a marked increase in vivo mutant frequencies under the conditions of this experimental design. The forestomach and lymphatic organs including the spleen (malignant lymphoma) were the main target organs for BP carcinogenesis by 5 daily oral doses of 75 and 125 mg kg(-1) day(-1). These results suggest that the mutation results from the transgenic assay with BP reflect the carcinogenicity of BP in the mouse. They also indicate, however, that the magnitude of the in vivo lacZ mutant frequencies induced by BP in different organs did not fully correlate with the target organs for carcinogenicity.  相似文献   

20.
BACKGROUND: NS-21 is under development for the treatment of urinary frequency and urinary incontinence. The purpose of this study was to investigate the effects of NS-21 and its active metabolite, RCC-36, on lower urinary tract function in an experimental rat model of urinary frequency. METHODS: Cystometrograms were recorded in anesthetized rats with bilaterally transected hypogastric nerves. All drugs were administered intraduodenally. RESULTS: In sham-operated rats, NS-21 (> or = 50 mg/kg) significantly increased the bladder capacity without significantly decreasing micturition pressure, while RCC-36 (100 mg/kg) significantly increased bladder capacity, and at a dose of > or = 30 mg/kg, also caused a decrease in micturition pressure. This increase in bladder capacity appeared at lower doses of both NS-21 and RCC-36 in the hypogastric nerve-transected rats. Propiverine (100 mg/kg) increased bladder capacity and at > or = 30 mg/kg, decreased micturition pressure in both sham-operated and nerve-transected rats. Oxybutynin (100 mg/kg) and atropine (30 mg/kg) decreased the micturition pressure in both sham-operated and nerve-transected rats without increasing the bladder capacity, while a similar anticholinergic calcium antagonist, terodiline (100 mg/kg) had no effect on bladder capacity in either sham-operated or nerve-transected rats. Flavoxate (500 mg/kg) significantly increased bladder capacity without significantly decreasing micturition pressure in both sham-operated and nerve-transected rats, while 50 mg/kg of verapamil significantly increased bladder capacity without significantly decreasing the micturition pressure in nerve-transected rats. CONCLUSIONS: NS-21 and RCC-36 increased bladder capacity at lower doses in hypogastric nerve-transected rats than in sham-operated rats. Furthermore, NS-21 increased the bladder capacity without suppressing micturition pressure, suggesting that NS-21 may be a more effective therapeutic drug than propiverine, oxybutynin or flavoxate for the treatment of urinary frequency and urinary incontinence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号