首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies in the expansion behaviour of tapered fluidized bed systems are important for specifying the height of the bed. Data have been obtained on the expanded heights of tapered fluidized beds and bed expansion ratios for spherical and non-spherical particles have been calculated. Based on dimensional analysis, models have been developed as a function of geometry of tapered bed, static bed height, particle diameter, density of solid and gas and superficial velocity of the fluidizing medium. The data used to derive the models cover a wide range of operating conditions, with varying fluidization velocities. Effects of static bed height, particle diameter, density, tapered angle and superficial gas velocity over minimum fluidization velocity on bed expansion ratios have been investigated experimentally. A comparison has been made between the calculated values of bed expansion ratios using proposed models and the experimental data. It has been seen that calculated values by models agree well with the experimental values. Models have also been compared with literature data of conventional bed and found its applicability at higher gas velocities with good accuracy.  相似文献   

2.
The prediction of minimum fluidization velocity for vibrated fluidized bed was performed. The Geldart group A and C particles were used as the fluidizing particles. The method based on Ergun equation was used to predict the minimum fluidization velocity. The calculated results were compared with the experimental data.The calculated results of minimum fluidization velocity are in good agreement with experimental data for Geldart group A particles. For group C particles, the difference between the calculated results and experimental data is large because of the formation of agglomerates. In this case, the determination of agglomerate diameter is considered to be necessary to predict the minimum fluidization velocity.  相似文献   

3.
A uniform fluidization exists between minimum fluidization velocity and minimum bubbling velocity. Experimental investigations have been carried out for determination of minimum bubbling velocity and fluidization index for non-spherical particles in cylindrical and non-cylindrical beds. In the present paper equations have been developed for the prediction of minimum bubbling velocity for gas-solid fluidization in cylindrical and non-cylindrical (viz. semi-cylindrical, hexagonal and square) beds for non-spherical particles fluidized by air at ambient conditions. A fairly good agreement has been obtained between calculated and experimental values. Based on the experimental data it is concluded that under similar operating conditions minimum bubbling velocity and the fluidization index are maximum in case of either semi-cylindrical conduit or hexagonal conduit for most of the operating conditions and minimum in case of square one. It is further observed that the range of uniform (particulate) fluidization is maximum in case of semi-cylindrical bed for identical operating conditions.  相似文献   

4.
污泥颗粒与河砂混合流化特性的实验研究   总被引:3,自引:1,他引:2  
在内径f105 mm、高800 mm的冷态流化床实验装置上进行了污泥颗粒与河砂混合流化特性的实验研究,获得了污泥颗粒水分、污泥颗粒与河砂的质量比对混合物料的流化特性的影响规律. 实验结果表明,污泥颗粒的水分、污泥颗粒与河砂的质量比会影响混合物料的最小流化速度,也影响污泥颗粒与河砂混合的均匀程度. 污泥颗粒的质量比越大,混合物料的最小流化速度越大;污泥颗粒的水分含量越高,混合物料的最小流化速度也越大;污泥颗粒与河砂的质量比越接近1:1,越容易实现充分混合. 在对实验数据进行分析处理的基础上,提出了污泥颗粒与河砂混合物料的最小流化速度经验方程,为流化床污泥颗粒干燥工艺提供基础数据和设计依据.  相似文献   

5.
在高1 m、内径42mm的流化床中,对粒径54-600 μm、密度2 252-2 665 kg/m3的磷矿颗粒的流态化特性进行实验研究.实验结果表明:磷矿颗粒粒径和密度对磷矿颗粒流态化行为有较大影响,床层膨胀比随着磷矿颗粒粒径的增大而逐渐减小.当磷矿颗粒属于Geldart B类颗粒时,流化较好;而当颗粒平均粒径为82 ...  相似文献   

6.
在底部直径为120 mm的锥型流化床中,以玻璃珠为流化颗粒,过热蒸汽为流化介质,研究了固体颗粒在过热蒸汽流化床中的流化特性,考察了操作温度和压力对临界流化速度(umf)的影响.结果表明,过热蒸汽流化床的流化行为与热空气相似,临界流化速度(umf)随床层温度的升高而减小,随床内压力的增大而减小;在相同温度条件下,过热蒸汽流化床的临界流化速度比热空气大.  相似文献   

7.
Understanding the minimum fluidization velocity of biomass and sand mixtures is fundamental to ensuring the optimal performance of fluidized beds in a thermo-conversional process, such as fast pyrolysis. The present work aimed to determine the minimum fluidization velocity of binary mixtures using the characteristic diagram of pressure drop in the bed and to develop an experimental correlation for the minimum fluidization velocity of biomass and sand mixtures. Three types of biomass (sweet sorghum bagasse, waste tobacco and soybean hulls) and four sands with different sizes were investigated. The results showed that the fluid dynamic behavior of binary mixtures is directly related to the biomass size and shape. For sweet sorghum bagasse (more irregular particles), higher biomass percentages led to lower minimum fluidization velocities, which differed from the behaviors observed for waste tobacco and soybean hulls. The diameter ratio inert/biomass effectively influenced the segregation, with a higher ratio causing more pronounced bed segregation. A good fluidization regime (with little segregation) for biomass and sand mixtures was obtained using the smallest sand (d50 = 0.35). Considering the studied operating conditions, the proposed correlation can be used satisfactorily to predict the minimum fluidization velocities for mixtures of biomass and sand in fluidized beds.  相似文献   

8.
The tapered fluidized bed is a remedial measure for certain drawbacks of the gas–solid system, by the fact that a velocity gradient exists along the axial direction of the bed with increase in cross-sectional area. To study the dynamic characteristics of heterogeneous binary mixture of irregular particles, several experiments have been carried out with varying tapered angles and composition of the mixtures with various particles. The tapered angle of the bed has been found to affect the characteristics of the bed. Models based on dimensional analysis have been proposed to predict the critical fluidization velocity and maximum bed pressure drop for gas–solid tapered fluidized beds. Experimental values of critical fluidization velocity and maximum bed pressure drop compare well with that predicted by the proposed models and the average absolute errors are well within 15%.  相似文献   

9.
Recently, tapered fluidized bed has become more attractive because of the problems associated with conventional (cylindrical) beds like fluidization of widely distributed particles, entrainment of particles and limitation of fluidization velocity. There have been some investigations on hydrodynamics of uniform single size particles but there have been no detailed studies of homogeneous binary mixture of particles of different sizes and different particles in tapered beds. In the present work, an attempt has been made to study the hydrodynamic characteristics of homogeneous binary mixture of irregular particles in tapered beds having different tapered angles. Correlations have been developed for important characteristics, especially critical fluidization velocities and maximum bed pressure drops of homogeneous binary mixture of irregular particles in gas-solid tapered fluidized beds. Experimental values of critical fluidization velocities and maximum bed pressure drops have been compared with the developed correlations.  相似文献   

10.
Hydrodynamic studies on three-phase fluidized bed using CFD analysis   总被引:1,自引:0,他引:1  
Three-phase fluidization refers to fluidization of solid particles by co-current, upward flow of gas and liquid-phases for the purpose of bringing three-phases in contact in a single operation. Due to complications in understanding hydrodynamics of three-phase fluidized bed, CFD analysis is used to predict the hydrodynamics of it. In this study, liquid-phase is water which flows continuously, where as the gas phase is air which is distributed discretely throughout the bed. Ceramic particle of 1 mm diameter, density of 2650 kg/m3 is used as a solid phase. Excellent mixing, heat and mass transfer rates are the unique features of three-phase fluidized bed. The selection of distributor plays an important role in the quality of fluidization [1]. CFD model is created as the realistic representation of actual fluidized bed. The liquid and solid flow is represented by the mixture model. The air is injected from the bottom of the fluidized by means of discrete phase method (DPM). Simulation results are obtained by using porous jump and porous zone model to represent the distributor. It is found that porous zone model is best applicable in the industries, since stability of operating conditions is achieved even with non-uniform air, water flowrates and with different bed heights(100 mm, 200 mm, 300 mm, 400 mm and 500 mm).Simulated Pressure drop values of the fluidized bed have good agreement with the experimental findings. As the gas flowrate increases, the pressure drop in the column is decreases, provided the initial bed height, diameter of the column, and liquid flowrate are constant. This is due to decrease in density of the fluid medium in the bed by means of more gas hold up. The approach of the simulated values to the experimental values can be reduced with better understanding the nature of the fluidized bed.  相似文献   

11.
振动流化床中双组分颗粒流化特性的研究   总被引:1,自引:0,他引:1  
本文研究了内径为148mm振动圆柱床中等密度和不等密度的双组分颗粒流化特性,考察了不同振动强度对双组分颗粒的床层空隙率、最小流化速度及相图的影响,给出了床层空隙率和最小流化速度的计算式,此计算值与实验值基本相符,且对振动流化床的实际操作和工程设计起到一定的指导作用。  相似文献   

12.
The temporal and cross-sectional distributions of particles in a 127 mm diameter fluidized bed have been obtained using a new generation, high-speed electrical capacitance tomography. Two planes of eight electrodes were used and mounted at 160 and 660 mm from the gas distributor which was a 3 mm thick porous plastic plate (maximum pore size of 50-70 μ m). 3 mm diameter, nearly-spherical polyethylene granules made up the bed. Experiments at sampling frequencies of 200-2000 cross-sections per second and gas superficial velocities from just below the minimum fluidization to 83% above minimum fluidization velocities were used. The time series of the cross-sectional average void fractions have been examined both directly and in amplitude and frequency space. The last two used probability density functions and power spectral densities. The information gathered shows that the fluidized bed was operating in the slugging mode, which is not surprising given the size of the particles. It has been found that an increase in the excess gas velocity above the minimum fluidization velocity resulted in an increase in the mean void fraction, an increase in the length and velocity of the slug bubbles as well as the bed height, and a slight decrease in the slug frequency. The results are presented in a level of detail suitable for comparison with later numerical simulation.  相似文献   

13.
Experiments show that the minimum fluidization velocity of particles increases as the diameter of the fluidization column is reduced, or if the height of the bed is increased. These trends are shown to be due to the influence of the wall. A new, semicorrelated model is proposed, which incorporates Janssen's wall effects in the calculation of the minimum fluidization velocity. The wall friction opposes not only the bed weight but also the drag force acting on the particles during fluidization. The enhanced wall friction leads to an increase in the minimum fluidization velocity. The model predictions compare favorably to existing correlations and experimental data. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

14.
在内径3~20 mm的4个气-固微型流化床中,分别考察了A类和B类两种类型颗粒的流化特性,同时研究了床几何结构、操作条件、物相性质等各因素对其最小流化速度的影响.结果 表明,气-固微型流化床中的床层压降特性与颗粒类型密切相关,不同的流动状态下两种类型颗粒的流动特性存在显著地差异.在固定床阶段,与B类颗粒相比,A类颗粒与...  相似文献   

15.
微小流化床流化特性分析   总被引:4,自引:2,他引:2  
在内径4.3, 5.5, 10.5, 15.5, 20.5和25.5 mm的6个气固微小流化床中,考察了石英砂和不同粒径的催化裂化催化剂的流化特性. 研究了流化床尺寸、颗粒及流化介质物性对微小流化床床层压降及最小流化速度的影响. 结果表明,不同颗粒及流化介质的微小流化床床层压降实验值均小于计算值. 传统的压降关联式不能直接用于微小流化床. 其最小流化速度随床径减小呈指数增大,在高径比1:1~3:1范围内,最小流化速度随料高增大近似呈线性增大,其增大速度随床径增大而变缓. 基于实验数据得出了微小流化床最小流化速度的关联式.  相似文献   

16.
The problems associated with conventional (cylindrical) fluidized beds, viz., fluidization of wider size range of particles, entrainment of particles and limitation of fluidization velocity could be overcome by using tapered fluidized beds. Limited work has been carried out to study the hydrodynamics of single materials with uniform size particles in tapered beds. In the present work, an attempt has been made to study the hydrodynamic characteristics of binary mixtures of homogeneous and heterogeneous regular particles (glass bead and sago) in tapered fluidized beds having different tapered angles. Correlations have been developed for critical fluidization velocity and maximum bed pressure drop for gas–solid tapered fluidized beds for binary mixtures of regular particles. Model predictions were compared with experimental data, which were in good agreement.  相似文献   

17.
在百年流态化的研究过程中,涉及到直径不同的流化床。但是,多以流化床的大型化为研究目标,对微型流化床及其本身特性的研究很少。作为专门处理固体颗粒的流态化单元过程,其装置的微型化将兼具微通道反应器和宏观流化床各自的优点,是流态化研究的重要方向。鉴于气固微型流化床已有全面的国内外进展综述,本文仅对液固和气液固微型流化床的国内外研究进展进行分析。结论性内容包括:液固微型流化床床径减小,壁面效应增强,最小流化液速实验值大于Ergun公式计算值;需对描述液固均匀膨胀流化规律的Richardson-Zaki方程加以修正。气液固微型流化床内存在4种典型流型:半流化、弹状流、分散鼓泡流和液体输送流;由于床径减小,出现半流化状态,依据压降表观液速关系曲线等无法确定最小流化液速;气液固微型流化床的反应性能得以有效提升;最后给出了进一步研究的方向,以期为后续研究提供参考。  相似文献   

18.
The minimum fluidization velocity of beds has been determined experimentally in beds of 0.089 m and 0.29 m diameters, respectively. The particles studied had sizes ranging from 100 μm to 1 mm in diameter, and densities from 1128 to 11400 kg/m3. Three distributors were used in the experimental scheme, each perforated by holes of 0.8 mm in diameter but with varying hole densities, as well as a porous plate. It was found that the minimum fluidization velocity was affected by both the diameter and distributor used. The effect of vertical tubular inserts on the minimum fluidization velocity was investigated in the 0.29 m diameter bed. The experimental data in the large bed, using four distributors, were parameterized within experimental error.  相似文献   

19.
利用内径150 mm的D型有机玻璃流化床模型,对澳矿、巴西矿、北方矿和钒钛矿典型铁矿粉的流化特性进行了实验研究,获得了其流化特性曲线、初始流化速度和最大床层压降,并将初始流化速度的实测值和理论计算值进行了比较分析. 结果表明,矿粉粒度是影响其流化特性的最主要因素,粒径越大,床层所需要的初始流化速度越大,实测值和理论估算值基本相符;粒度小于0.125 mm钒钛矿流动性较差,在流化过程中易出现沟流现象;粒度范围较宽的矿粉,完全流态化时,细矿粉随气流夹带逸出明显;在粒度相同的情况下,几种不同的铁矿粉的开始流化速度接近,而床层压降有较大差异,巴西矿的床层压降明显大于其他三种铁矿粉. 最大床层压降的最小值均出现在粒度为0.25~0.425 mm,为铁矿粉流态化还原过程中较适宜的粒度范围.  相似文献   

20.
Fluidization characteristics of crushed oil palm fronds were studied. The elongated shape of the particles and their fibrous nature created entanglement between the particles and caused the bed to form crack and plug flow when aerated in ordinary fluidized bed. Fluidization of the fibres became feasible with the aid of mechanical agitation. Agitation helped to loosen the entanglement of the fibres which prevents air to pass through the bed of particles, as a result, fluidization state could be attained. Experiments were carried out in a column with height of 72 cm and ID of 14.4 cm. Superficial air velocities used ranged from 0.1 to 1.1 m/s, bed heights ranged from 4 to 8.5 cm, agitation speeds ranged from 300 to 500 rpm and particle initial moisture contents from 0.5 to 2.4 g water/g dry solids. Analysis of the fluidization characteristics showed that minimum fluidization velocity was independent with bed height and agitation speed. However, investigation on the effect of particle initial moisture content showed that minimum fluidization velocity increased with particle moisture content. A new empirical correlation to predict minimum fluidization velocity has been derived which gives good agreement with experimental data in this study and the data from other study in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号