首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
在含有ZnSO4,SC(NH2)2,NH4OH的水溶液中采用CBD法沉积ZnS薄膜,XRF和热处理前后的XRD测试表明,ZnS沉积薄膜为立方相结构,薄膜含有非晶态的Zn(OH)2.光学透射谱测试表明,制备的薄膜透过率(λ>500nm)约为90%,薄膜的禁带宽度约为3.51eV.ZnS薄膜沉积时间对Cu(In,Ga)Se2太阳电池影响显著,当薄膜沉积时间在25~35min时,电池的综合性能最好.对比了不同缓冲层的电池性能,采用CBD-CdS为缓冲层的电池转换效率、填充因子、开路电压稍高于CBD-ZnS为缓冲层的无镉电池,但无镉电池的短路电流密度高于前者,两者转换效率相差2%左右.ZnS可以作为CIGS电池的缓冲层,替代CdS,实现电池的无镉化.  相似文献   

2.
在A(ZnSO4、SC(NH2)2、NH4OH)和含有联氨的B(ZnSO4、SC(NH2)2、NH4OH、(NH2)2)两种水溶液中采用化学水浴法沉积ZnS薄膜,研究了联氨对薄膜沉积过程和薄膜性质的影响.结果表明,加入少量联氨以后,薄膜沉积速度明显增加.两种溶液沉积的ZnS都为立方相结构,且含有联氨的B溶液沉积的ZnS薄膜表面附着颗粒较少.在含有联氨的B溶液中沉积的ZnS薄膜结晶度和短波区的透过率均高于A溶液沉积的ZnS薄膜.将两种溶液沉积的ZnS薄膜作为电池缓冲层制备铜铟镓硒(CIGS)薄膜太阳电池,加入联氨沉积的ZnS制备的CIGS电池转换效率达到7.77%,比不加联氨沉积的ZnS制备的CIGS电池转换效率提高了1.3%.  相似文献   

3.
张靖磊  仲飞  刘彭义   《电子器件》2008,31(1):40-43
用磁控溅射方法制备的ZnS薄膜作为有机发光器件(OLEDs)的空穴缓冲层,使典型结构的 OLEDs(ITO/TPD/Alq/LiF/Al) 的发光性能得到改善.ZnS 缓冲层厚度对器件性能影响的实验结果表明,当ZnS缓冲层厚度为 5 nm 时,器件的亮度增加了2倍多;当ZnS缓冲层厚度为5、10 nm时,器件的发光电流效率增加40%.研究结果表明 ZnS 薄膜是一种好的缓冲层材料,它能够提高器件的发光效率,改善器件的稳定性.  相似文献   

4.
以硫酸锌、(NH4)2S2O3混合溶液为前驱体溶液,加入少量的柠檬酸钠和丙三醇为络合剂和分散剂,采用化学浴沉积法在玻璃衬底上成功制备了表面均匀的ZnS薄膜。研究了沉积时间和退火时间对ZnS薄膜质量的影响,并运用扫描电镜(SEM)、X射线衍射(XRD)、紫外-可见光光度计对薄膜进行分析和表征。结果表明:在沉积时间为90m in,退火温度为200℃时制得的薄膜性能较好,晶体结构为纤锌矿结构。制备的薄膜透过率(λ>400nm)约为80%,薄膜的禁带宽度约为3.75eV。通过添加少量的分散剂丙三醇可以改善ZnS薄膜质量。退火温度为300℃,薄膜表面形貌均匀致密。  相似文献   

5.
应用溅射后硒化法和原子层沉积法分别制备了无镉的铜铟镓硒电池关键膜层CIGS光吸收薄膜和ZnO缓冲层,着重对该两膜层进行XPS和AFM表面分析,得到比较理想的制备工艺条件,并结合其它检测方法:SEM、XRD及吸收光谱等,证明采用操作简便、成本低廉的该工艺能制备出无镉的铜铟镓硒电池。通过I-V测试结果,该电池有一定的光电转换效率。  相似文献   

6.
铜铟镓硒(Cu(In,Ga)Se2,CIGS)太阳电池产业化受到全世界广泛关注。作为高转换效率薄膜电池,其效率可与晶硅电池相比,目前最高效率达到23.35%。对于小面积实验室电池而言,研究重点是精确控制吸收层的化学计量比和效率;对于工业化生产而言,除化学计量比和效率外,成本、重现性、产出和工艺兼容性在商业化生产中至关重要。重点介绍了不同制备工艺、吸收层组分梯度调控、碱金属后沉积处理、宽带隙无镉缓冲层、透明导电层和柔性衬底等研究进展。从CIGS电池的效率来看,将实验室创纪录的高效电池技术转移到平均工业生产水平带来显而易见的挑战。  相似文献   

7.
研究了衬底温度、反应气体流量等工艺条件对掺杂B(CH3)3(TMB)的P型氢化非晶硅碳(a-SiC:H)窗口材料性能的影响,获得了电导率达到8.97×10-7 S/cm、光学带隙大于2.0 eV的P型a-SiC:H窗口材料.研究了单结电池P型a-SiC:H窗口层的CH4流量与P、I层制备温度三者间的匹配关系.结果表明,随着衬底温度的提高,需要更多的CH4流量以增大P型窗口层的带隙Eg和电池的短路电流密度Jsc;沉积系统中,P型窗口层的温度比本征吸收层高25~50 ℃时,电池性能较好.研究了3种类型的P/I缓冲层对单结电池性能的影响.大量实验表明,不掺B的C缓冲层适合于低温和小CH4流量情况使用;掺B的C缓冲层 不掺B的C缓冲层适合于高温和大CH4流量情况使用;采用不掺B的C缓冲层的电池光稳定性高于采用B、C渐变缓冲层的电池.研究还表明,采用新型TMB作为P型窗口层掺杂剂的电池比传统采用B2H6作为P型窗口层掺杂剂的电池转换效率提高约1.0%.  相似文献   

8.
在掺杂P室采用甚高频等离子体增强化学气相沉积(VHF-PECVD)技术,制备了不同硅烷浓度条件下的本征微晶硅薄膜.对薄膜电学特性和结构特性的测试结果分析表明:随硅烷浓度的增加,材料的光敏性先略微降低后提高,而晶化率的变化趋势与之相反;X射线衍射(XRD)测试表明材料具有(220)择优晶向.在P腔室中用VHF-PECVD方法制备单结微晶硅太阳能电池的i层和p层,其光电转换效率为4.7%,非晶硅/微晶硅叠层电池(底电池的p层和i层在P室沉积)的效率达8.5%.  相似文献   

9.
袁吉仁  邓新华 《电子器件》2012,35(6):631-634
Cu2ZnSnS4(CZTS)太阳能电池是一种低成本环保型的具有巨大发展潜力的新型薄膜太阳能电池。主要对用μc-3C-SiC材料作为CZTS太阳能电池的缓冲层进行了数值研究,发现μc-3C-SiC材料能够显著改善CZTS电池的蓝光光谱响应,提高电池的转换效率。另外,μc-3C-SiC材料没有毒性,具有钝化CZTS表面缺陷以及使用较厚的μc-3C-SiC缓冲层可以不需本征ZnO层等优点,使得μc-3C-SiC成为一种很有应用前景的CZTS薄膜太阳能电池的缓冲层材料。  相似文献   

10.
NIP型非晶硅薄膜太阳能电池的研究   总被引:3,自引:3,他引:0  
采用射频等离子体增强化学气相沉积(RF-PECVD)技术制备非晶硅(a-Si)NIP太阳能电池,其中电池的窗口层采用P型晶化硅薄膜,电池结构为Al/glass/SnO2/N(a-Si:H)/I(a-Si:H)/P(cryst-Si:H)/ITO/Al.为了使P型晶化硅薄膜能够在a-Si表面成功生长,电池制备过程中采用了H等离子体处理a-Si表面的方法.通过调节电池P层和N层厚度和H等离子体处理a-Si表面的时间,优化了太阳能电池的制备工艺.结果表明,使用H等离子体处理a-Si表面5 min,可以在a-Si表面获得高电导率的P型晶化硅薄膜,并且这种结构可以应用到电池上;当P型晶化硅层沉积时间12.5 min,N层沉积12 min,此种结构电池特性最好,效率达6.40%.通过调整P型晶化硅薄膜的结构特征,将能进一步改善电池的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号