共查询到15条相似文献,搜索用时 78 毫秒
1.
原子量级条件下单晶硅磨削过程中的亚表面损伤 总被引:1,自引:0,他引:1
应用分子动力学仿真研究了原子量级条件下磨粒钝圆半径、磨削深度和磨削速度对单晶硅磨削后亚表面损伤层深度的影响.分子动力学仿真结果表明:在磨削深度和磨削速度相同情况下,随着磨粒钝圆半径的减小,损伤层深度和硅原子间势能亦减小.随着磨削深度的增大,损伤层深度和硅原子间势能增大.在磨削深度和磨粒钝圆半径相同的情况下,在20~200 m/s范围内,磨削速度对单晶硅亚表面损伤影响很小,说明分子动力学仿真对磨削速度的变化不敏感,因此可以适当提高仿真速度,从而缩短仿真时间和扩大仿真规模.单晶硅亚表面损伤主要是基于硅原子间势能的变化,并通过超精密磨削实验进行了实验验证. 相似文献
2.
单晶硅纳米级磨削过程中磨粒磨损的分子动力学仿真 总被引:5,自引:0,他引:5
建立了考虑磨粒磨损的三维分子动力学仿真模型,将固体物理学中的爱因斯坦模型引入到金刚石磨粒原子的温度转换过程中, 设计了分子动力学仿真程序.研究结果表明:在磨削的初期,磨粒有明显的磨损,但当磨损到一定阶段后,磨粒不再磨损, 磨削开始进入稳定的切削状态.金刚石磨粒的磨损主要发生在磨粒的最底部,这与表面效应有密切关系.由于表面效应,磨粒底部表面原子配位不足,导致磨粒底部结构表面存在许多缺陷,使磨粒底部表面具有很高的活性,极不稳定,根据最小能量原理,它将自发地向最低能量状态变化,也就是通过塑性变形、非晶相变等变化释放能量,使磨粒的表面能减少,从而发生磨损. 相似文献
3.
建立了考虑磨粒磨损的三维分子动力学仿真模型,将固体物理学中的爱因斯坦模型引入到金刚石磨粒原子的温度转换过程中, 设计了分子动力学仿真程序.研究结果表明:在磨削的初期,磨粒有明显的磨损,但当磨损到一定阶段后,磨粒不再磨损, 磨削开始进入稳定的切削状态.金刚石磨粒的磨损主要发生在磨粒的最底部,这与表面效应有密切关系.由于表面效应,磨粒底部表面原子配位不足,导致磨粒底部结构表面存在许多缺陷,使磨粒底部表面具有很高的活性,极不稳定,根据最小能量原理,它将自发地向最低能量状态变化,也就是通过塑性变形、非晶相变等变化释放能量,使磨粒的表面能减少,从而发生磨损. 相似文献
4.
5.
为了揭示硅片自旋转磨削加工表面层损伤机理,采用透射电子显微镜对硅片磨削表面层损伤特性进行了分析.结果表明:粗磨Si片的损伤层中有大量微裂纹和高密度位错;半精磨和精磨si片的损伤层中除了微裂纹和位错外,还存在非晶硅和多晶硅(Si-I相和Si-III相).从粗磨到半精磨,Si片的非晶层厚度从约Onm增大到约110nm;从半精磨剑精磨,Si片的非品层厚度由约110nm减小至约30nm,且非晶层厚度的分布均匀性提高.从粗磨到精磨,Si片损伤深度、微裂纹深度及位错滑移深度逐渐减小,材料的去除方式由脆性断裂方式逐渐向塑性方式过渡. 相似文献
6.
为了揭示硅片自旋转磨削加工表面层损伤机理,采用透射电子显微镜对硅片磨削表面层损伤特性进行了分析.结果表明:粗磨Si片的损伤层中有大量微裂纹和高密度位错;半精磨和精磨si片的损伤层中除了微裂纹和位错外,还存在非晶硅和多晶硅(Si-I相和Si-III相).从粗磨到半精磨,Si片的非晶层厚度从约Onm增大到约110nm;从半精磨剑精磨,Si片的非品层厚度由约110nm减小至约30nm,且非晶层厚度的分布均匀性提高.从粗磨到精磨,Si片损伤深度、微裂纹深度及位错滑移深度逐渐减小,材料的去除方式由脆性断裂方式逐渐向塑性方式过渡. 相似文献
7.
8.
9.
GaAs化学机械抛光引入亚表面损伤层的分析 总被引:1,自引:0,他引:1
采用TEM、X rayRockingCurve等测试的方法,对GaAs晶片化学机械抛光后亚表面损伤层引入的深度进行了分析,探讨了碱性SiO2胶体水溶液加入不同浓度的电解质(NaOCl)后所发生胶粒带电程度的变化,从胶体理论的角度解释了SiO2胶体溶液不稳定对GaAs抛光晶片亚表面损伤层的影响。 相似文献
10.
11.
12.
提出了一种改进的角度抛光方法来测量硅片的亚表面损伤.其原理是:经过研磨和化学机械抛光后,起保护作用的陪片靠近胶黏剂的一端形成一个无损伤的、完整的劈尖,劈尖的棱边作为测量亚表面损伤的基准;角度抛光的倾斜角可通过劈尖上面产生的干涉条纹准确地测量得到.采用这种方法可以方便、准确地测量硅片由切割、研磨和磨削引起的亚表面损伤,其能够测量的最小损伤深度为几百纳米. 相似文献
13.
14.
王震生 《中国电子科学研究院学报》2008,3(2):212-215
随着IC制造技术的飞速发展,为了增加IC芯片产量和降低单元制造成本,硅片直径趋向大直径化,原有的传统研磨工艺已不适应大直径硅片的加工,人们开始研究用硅片自旋转表面磨削方法来代替传统的研磨方法。通过实验的方法,对切割后的硅片表面进行磨削,获得了较理想的表面效果,达到了减少抛光去除量和抛光时间的目的。 相似文献