共查询到16条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
本文对传统的K-means聚类算法进行了深入的分析研究,发现了算法当中的一些缺陷和漏洞,并且找出可以改进K-means聚类算法的方法,使聚类分析的结果更具有实际意义,保证了聚类结果的高质量。 相似文献
6.
在大数据的数据挖掘模型中,普遍采用模糊聚类算法进行数据分析。常用的模糊C均值聚类算法即FCM聚类算法,具有较多明显缺点,如抗噪性偏低、收敛速度慢、聚类数目无法自动确定等。常用的增量式模糊聚类方法通常在原有的以一个中心点为集群代表的基础上,改为选取多中心点进行增量式聚类算法的分析。但是,通过这样的算法进行数据分析也存在一定的问题,主要表现在其中心点选择是固定的,灵活性很差。基于以上原因,文中将对原有基础算法做出改进,主要对大数据中数据挖掘模型的增量型模糊聚类算法做出分析,经实践验证,改进后算法切实可行,普适性较强。 相似文献
7.
8.
文章研究和分析了数据流上几种典型的聚类分析算法,分析了这几种算法的优点和不足。研究了现在数据流聚类分析的现状,指出未来发展方向。 相似文献
9.
为了提高数据挖掘准确性和效率,文中提出了基于决策树算法的信息系统数据挖掘方法.以C4.5决策树算法计算属性的信息增益率和属性值的信息熵为基础,提出基于余弦相似度改进的C4.5决策树算法,若任意两个属性值的信息熵之差在阈值范围内,通过计算其余弦相似度合并在阈值范围内的属性值,并重新计算合并后属性的信息增益率,实现信息系统... 相似文献
10.
决策树算法是数据挖掘中一种非常重要的分类方法.决策树具有属性结构和较好的分类预测能力,提供了基本的提取决策规则.本文阐述了决策树算法的基本思想,并分析了决策树算法运用中会遇到的一些问题,并针对性的提出一些建议. 相似文献
11.
K-均值聚类对初始聚类中心的选取较敏感,容易陷入局部最优.将改进的遗传算法与K-均值聚类相结合,以优化聚类中心.在种群进化过程中,父代个体均从种群中适应度高的个体中选择,同时,根据个体适应度动态调节交叉概率和变异概率,避免早熟现象.文中采用改进的遗传算法,对学院网站服务器上的Web日志进行用户和页面聚类,达到了很好的聚类效果. 相似文献
12.
13.
针对传统的K均值聚类分析,不考虑对象中每个变量在聚类过程中体现作用的不同,而是统一看待,用这样计算的距离来表示两个对象的相似度并不确切。文中提出了一种基于距离度量的聚类算法,算法使用新的距离度量代替了K均值聚类算法的欧式距离,应用新的距离度量之后,数据点的权重不再只为1或0,而是由系数来确定,这就将硬划分转化为软划分。最后经过实验证明了改进的聚类算法比传统的K均值聚类收敛速度有了很大提高,提高了算法的执行效率。 相似文献
14.
针对数据在性态和类属方面存在不确定性的特点,提出一种基于模糊C均值聚类的数据流入侵检测算法,该算法首先利用增量聚类得到网络数据的概要信息和类数,然后利用模糊C均值聚类算法对获取的数据特征进行聚类。实验结果表明该算法可以有效检测数据流入侵。 相似文献
15.
提出使用下降迭代算法对数值聚类分析技术进行优化.下降迭代通过设定函数,给出初始假设解,然后按照某种规则依次找到最优解.首先介绍常用聚类算法,从而引出下降迭代法聚类.通过实验证明了下降迭代算法对数值聚类优化的可行性. 相似文献
16.
一种改进的K平均聚类算法 总被引:2,自引:0,他引:2
典型K平均算法中的聚类数k必须是事先给定的确定值,然而实际中很难精确确定,因而无法解决该核算法的实际问题.为此,提出距离代价函数作为最佳聚类数的有效性检验函数,建立了相应的数学模型,并据此提出了一种改进的k值优化算法.实验证明,与传统基于平均值方法实现数据聚类相比,用改进K值优化算法有效提高数据聚类效果. 相似文献