首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
电能计量装置在线监测系统   总被引:1,自引:0,他引:1  
电能计量装置在线监测系统可以对电压互感器二次压降、电压互感器二次负荷、电流互感器二次负荷、电压互感器误差、电流互感器误差、电能表误差进行在线测试。通过在线监测能及时发现电能计量装置异常,确保电能计量装置准确、可靠运行。  相似文献   

2.
谐波背景下电能计量系统的计量误差分析   总被引:2,自引:0,他引:2  
电能计量系统由电能表、电压互感器与电流互感器三部分构成,谐波条件下这三部分的误差都将影响电能计量系统的整体计量误差。针对谐波条件下电力计量系统的计量准确性开展了研究,分别建立了谐波条件下电子式电能表、电容式电压互感器和电磁式电流互感器的谐波等效电路,分析了各自的谐波计量/测量误差及影响因素,并搭建了整个电能计量系统的模型,分析了其在谐波条件下的计量误差。通过对某具体电能计量系统的仿真分析,研究了谐波对电能计量系统影响的经济性。所研究内容为量化分析计量系统在谐波条件下的误差提供了参考。  相似文献   

3.
介绍了一种高压电能计量装置整体检定系统,能对6 k V~35 k V、10 A~1 000 A直接接入式高压电能表和计量柜等开展整体检定。该系统基于直接数字信号合成技术和智能功率放大技术,使用升压升流器产生稳定的三相高电压大电流信号,采用高压隔离电压电流组合式标准互感器和三相标准电能表作为参考标准,获得标准电能脉冲信号,通过误差测量计算器求出高压电能计量装置的误差。该高压电能整体检定系统与中国计量科学研究院的高压电能标准进行计量比对,结果表明其整体误差达到0.05%级要求。  相似文献   

4.
EDMI电能表对电能计量装置的在线补偿   总被引:1,自引:0,他引:1  
介绍一种利用电能表误差修正功能,减小由于电子式电能表外部电压、电流互感器引起的电能计量误差。这种方法符合管理规程。便于对电能计量装置实施改造,降低设备投资。  相似文献   

5.
《电世界》2020,(1)
正高压电能表是变电站重要的计量设备,通过信号采集器分别采集电压互感器的二次电压和电流互感器二次电流信号,经模数转换、电能计量单元计算和计数显示控制,实现对各路出线用户负荷的电能计费。目前,站内大多配置电子式多功能电能表。随着电能表使用年久和电子元器件老化,易发生黑屏、花屏、死机、计数器(存储器)及通信故障等各种计量异常情况,不能准确地进行电能的计量,需要及时进行更换。针对用户对用电可靠性要求高,高压系统不能停电等实际状况,本文提供了一  相似文献   

6.
为了解决现有高压电能计量系统中综合误差过大的问题,采用具有数字量输出的高压电子式电压、电流互感器采集高压信号,以光纤作为二次信号传输回路,并采用一种具有数字输入接口的电能计量装置,实现了一种全数字化的高压电能计量系统。通过与现有电能计量系统的对比分析,阐述了其优越性。介绍了其在35 kV电压等级下的一种具体实现。  相似文献   

7.
高压电能表的研制进展   总被引:1,自引:0,他引:1  
胡顺  徐芝贵 《电测与仪表》2008,45(1):1-3,42
高压电能表是配电网新型高压电能计量产品,克服了现有配电网高压计量装置组件复杂的弊端.本文提出了采用"电子式互感器传感取样"加"高压单相直接电能计量"的高压电能表设计方案,分析了高压电能表与传统高压计量装置相比的技术优势,并结合高压电能表的各项试验进行了方案验证.  相似文献   

8.
10kV高压电能计量装置整体校验台的校准   总被引:1,自引:0,他引:1  
高压电能计量装置的现行检定方法是对其组成环节电能表、电压互感器和电流互感器等分别检定,然后用理论计算得到的综合误差来衡量其准确度等级,这种评定方法不符合IEC关于电能表和电能表检验装置规定的基本原则,因此高压电能计量装置的整体校验台成为研究热点.本文介绍了用标准电压互感器、标准电流互感器和标准电能表组成高压标准电能计量装置,来校准新型高压电能计量装置整体校验台的方法,并对测量结果的不确定度进行了评定.  相似文献   

9.
电能计量系统发展综述   总被引:1,自引:0,他引:1       下载免费PDF全文
基于互感器、电能表和二次接口等方面回顾了电能计量装置的发展历程和原理,对21世纪现代电能计量装置的发展趋势进行了展望,指出数字化、智能化、标准化、系统化和网络化是现代电能计量系统发展的必然趋势。另外,还介绍了几个新型互感器(Rogowski光电式电流互感器、法拉第磁光效应互感器和光学电压互感器),特殊功用的新型电能表(单相电子式复费率电能表、三相预付费电表和数字式电能表)和几种常用电能计量芯片。  相似文献   

10.
电能计量系统发展综述   总被引:3,自引:0,他引:3  
基于互感器、电能表和二次接口等方面回顾了电能计量装置的发展历程和原理,对21世纪现代电能计量装置的发展趋势进行了展望,指出数字化、智能化、标准化、系统化和网络化是现代电能计量系统发展的必然趋势.另外,还介绍了几个新型互感器(Rogowski光电式电流互感器、法拉第磁光效应互感器和光学电压互感器),特殊功用的新型电能表(单相电子式复费率电能表、三相预付费电表和数字式电能表)和几种常用电能计量芯片.  相似文献   

11.
针对在高压电能计量中,当电压互感器一次保险故障时,电能表将不能反映电能的实际消耗的问题。对电压发生异常时机械表和电子表电能计量进行对比,说明电子式电能表的优越性。  相似文献   

12.
提出了一种兼顾单相、三相电压互感器和电流互感器以及电能表的一体化高压计量检定装置,具体提供了该检定装置的设计理念和构建的技术路线,并全面分析了该其测量不确定度来源。该一体化高压计量检定装置的研制成功,对解决国网公司最新确立的一、二次融合技术方案所需的电子式互感器、高压计量模块的检定具有重要意义。  相似文献   

13.
提出了一种兼顾单相、三相电压互感器和电流互感器以及电能表的一体化高压计量检定装置,具体提供了该检定装置的设计理念和构建的技术路线,并全面分析了该其测量不确定度来源。该一体化高压计量检定装置的研制成功,对解决国网公司最新确立的一、二次融合技术方案所需的电子式互感器、高压计量模块的检定具有重要意义。  相似文献   

14.
数字化变电站中电子式互感器输出形式为IEC61850-9-1数字信号帧,数字电能表接收此数字信号帧,直接进行数学运算得出电能。而在传统的变电站中,电磁式互感器输出的是模拟电压电流信号,电能表将模拟量转化为数字量,计算出电能。电子式互感器和数字电能表原理及接口方式都发生了根本性的改变。这就给电子式互感器校验和数字电能表的校验提出了新的要求,传统校验设备根本无法对其进行校验。为解决这一难题,本文提出了一种数字电能计量系统校验方法,对电子式互感器与数字电能表组成的数字计量系统进行整体的误差校验,并在国内首次进行了现场误差校验,取得了满意结果。  相似文献   

15.
电能计量装置的准确性直接影响着供电方和用电方的切实利益。因此,降低电能计量装置的误差,提高电能计量装置的准确性,做到准确、公正计量,是非常必要的。在实际运行中,影响电能计量装置准确性的因素较多,具体包括:电能表误差、二次回路误差、二次导线压降误差、电流互感器误差以及电压互感器误差等。为了优化电能计量装置的准确性,就应当采取选用合格的电能表,选用恰当的电流互感器与电压互感器,降低二次回路电压降以及强化管理等措施。  相似文献   

16.
李志 《云南电力技术》2007,35(4):59-59,64
电能计量装置现场检验是对电能表、计量用电压、电流互感器的现场校验及电压二次回路压降在安装现场实际工作状态下的在线(电能表、电压互感器二次压降)或离线(电流、电压互感器)的现场测量.通过现场检验,以便对电能计量综合误差、运行状态进行系统的掌握和管理.  相似文献   

17.
电能计量装置的综合误差主要由电能表误差、电流互感器与电压互感器合成误差以及电压互感器二次压降等因素构成。过去往往把重点放在减少电能表、互感器本身误差,保证电能表、互感器接线正确。而忽视了电压互感器二次回路压降对计量误差的影响。近几年,随着电能表、互感器生产技术的不断提高和成熟。由这一部分装置造成的误差在电能计量综合误差中所占的比例越来越小,而电压互感器二次压释所造成的误差也越发凸显出来。  相似文献   

18.
针对目前智能变电站电能计量装置的运行方式,就现有的技术情况介绍了电子式互感器、合并单元以及数字式电能表的现场校验方法.结合实际现场校验经验,对不同校验方法对电子式互感器误差测量的影响,以及电子式互感器误差不稳定和电子式电流互感器极性问题进行了分析,同时就数字式电能表实负荷检定存在的问题进行阐述,并对存在的问题提出了一系...  相似文献   

19.
介绍了江苏省上网关口电能计量装置中关口电能表精确度、电压互感器及电流互感器二次负荷评估、计量用互感器误差评估以及二次压降评估,对装置中的电能表、计量用电压互感器、计量用电流互感器、计量回路的测试数据进行了技术统计与分析,给出了评估意见,针对存在的问题提出了合理化的建议。  相似文献   

20.
关口电能计量装置所引起的电能计量误差主要是由电压、电流互感器的合成误差,电压互感器二次压降合成误差和电能表的误差组成的,因此.就必须进行电压、电流互感器、电压互感器二次压降、电能表等的现场测试工作。就目前的测量手段,电压互感器二次压降误差、关口电能表误差均可实现实负荷误差的测量。对于电流互感器的现场检验,由于以前只开展电流互感器试验室检定,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号