首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在由80 g/L Ni(NH_2SO_3)_2·4H_2O、12 g/L Co(NH_2SO_3)_2·4H_2O和40 g/L H_3BO_3组成的基础镀液中加入ZrO_2纳米粒子(平均直径50 nm),通过超声辅助电沉积法制备了Ni–Co–ZrO_2复合镀层,工艺条件为:pH 4.0,电流密度5 A/dm~2,温度50℃,超声功率240 W,极间距40 mm。研究了ZrO_2添加量对Ni–Co–ZrO_2复合镀层的微观结构、显微硬度、耐磨性和热稳定性的影响。ZrO_2纳米粒子的引入使所得复合镀层的表面更加平整、致密,镀层中Ni–Co合金的固溶体结构未发生变化,只是晶粒的择优取向和生长改变。当镀液中ZrO_2添加量为10 g/L时,所得Ni–Co–ZrO_2复合镀层具有较高的显微硬度以及较好的耐磨性和热稳定性。  相似文献   

2.
采用复合电镀工艺在纯铜棒表面制备了Ni–WC复合镀层。镀液组成和工艺条件为:NiSO_4·6H_2O 250~300 g/L,NiCl_2·6H_2O 40~50 g/L,H_3BO_3 30~45 g/L,十二烷基硫酸钠0.05 g/L,WC微粒(平均粒径400 nm)25~45 g/L,温度30~50°C,电流密度2.0~4.0 A/dm2,时间4 h。研究了WC添加量、阴极电流密度及镀液温度对Ni–WC复合镀层的WC含量和显微硬度的影响。WC添加量为35 g/L,镀液温度为40°C和阴极电流密度为3.0 A/dm~2,所得Ni–WC复合镀层的厚度为103μm,WC质量分数为29.95%,显微硬度为322.4 HV。分别采用Ni–WC复合电极、纯铜电极和纯镍电极为工具电极,对W_7Mo_4Cr_4V_2Co_5高速钢进行电火花加工。结果表明,最佳工艺下制备的Ni–WC复合电极的损耗率分别为纯铜电极和纯镍电极损耗率的72%和62%。  相似文献   

3.
以钕铁硼永磁体为基体,电沉积制备镍镀层。以镍镀层的耐蚀性、结合力、显微硬度和腐蚀电位为性能指标,通过正交试验得到最优配方和工艺条件为:NiSO_4·6H_2O 250 g/L,NiCl_2·6H_2O 30 g/L,H_3BO_3 35 g/L,糖精钠0.5 g/L,十二烷基硫酸钠(SDS)1 g/L,pH 5.0,电流密度2.0 A/dm2,温度50°C。在最佳工艺下制备的镍镀层结晶细致、均匀,结合力为9级,显微硬度为644.0 HV。与钕铁硼基体相比,Ni镀层在3.5%Na Cl溶液中的腐蚀电位正移了0.43 V,腐蚀电流密度降低了近2个数量级,表明电镀镍可提高钕铁硼的耐蚀性。  相似文献   

4.
考察了pH对45钢上化学复合镀Ni–P–聚四氟乙烯(PTFE)沉积速率和镀层孔隙率、磷含量、表面形貌、耐蚀性、显微硬度和摩擦因数的影响。镀液组成和工艺条件为:NiSO_4·6H_2O 25 g/L,NaH_2PO_2·H_2O 30 g/L,无水乙酸钠20 g/L,柠檬酸20 g/L,硫脲2 mg/L,氟碳型表面活性剂18 mg/L,PTFE 1.0 g/L,温度85℃,时间1 h。pH为5.0时,沉积速率为15.93μm/h,所得为高磷(质量分数8.34%)复合镀层,其显微硬度为163.3 HV,摩擦因数0.25,能耐中性盐雾腐蚀24.5 h。  相似文献   

5.
在Q235钢表面脉冲电镀Zn–Ni–Mn合金,镀液组成和工艺条件为:ZnSO_4·7H_2O 43.1 g/L,MnSO_4·H2_O 59.2 g/L,NiSO_4·6H_2O26.3 g/L,Na_3C_6H_5O_7·2H_2O 176.5 g/L,NH_4Cl 30 g/L,H_3BO_3 30 g/L,十二烷基硫酸钠(SDS)0.1 g/L,p H 4.5~6.0,温度30°C,平均电流密度30 m A/cm~2,脉冲占空比20%,脉冲周期1 ms,时间20 min。研究了pH对合金镀层元素组成、沉积速率、表面形貌和耐蚀性的影响。结果表明,随p H增大,沉积速率减小;镀层中锰含量升高,锌、镍含量降低;耐蚀性先增强后减弱。p H为5.0时,所得Zn–Ni–Mn合金镀层平整致密,Zn、Ni和Mn的质量分数分别为85.71%、5.03%和9.26%,中性盐雾试验96 h的保护等级为5级。与Zn–Ni合金镀层(Ni质量分数为12.88%)相比,Zn–Ni–Mn合金镀层的腐蚀电位正移了85 mV,腐蚀电流密度低了约2个数量级,耐蚀性更优。  相似文献   

6.
在45钢上脉冲电沉积Ni–W–HNTs复合镀层,基础镀液组成和工艺条件为:NiSO_4·6H_2O 15.8 g/L,Na_2WO_4·2H_2O 46.2 g/L,NaBr 15.5 g/L,柠檬酸三钠147.0 g/L,NH4Cl 26.7 g/L,十二烷基硫酸钠(SDS)0.1 g/L,pH=8.5,温度(70±5)°C,时间60 min。研究了镀液HNTs用量、平均电流密度、脉冲频率和占空比对复合镀层HNTs含量和厚度的影响,得到HNTs的最佳用量为10 g/L,最优脉冲参数为:平均电流密度7 A/dm2,脉冲频率800 Hz,占空比70%。该条件下所得Ni–W–HNTs复合镀层结构均匀、致密,表面平整,厚度为34μm,HNTs质量分数为8.72%,在3.5%NaCl溶液中的耐蚀性优于Ni–W合金镀层。  相似文献   

7.
采用NiSO_4·6H_2O与CoSO_4·7H_2O的质量浓度比不同的镀液在黄铜上喷射电沉积Co–Ni合金,研究了电流密度对Co–Ni合金镀层表面形貌、元素组成、晶体结构、显微硬度和耐磨性的影响。结果表明:随着电流密度的增大,Co–Ni合金镀层的晶粒先细化后粗化,Co含量减小。镀层在Co含量高于85%时基本为密排六方(hcp)相,低于85%时为hcp和面心立方(fcc)两相共存。镀层的晶粒越细,则显微硬度越高,耐磨性越好。在CoSO_4·7H_2O和NiSO_4·7H_2O的质量浓度分别为200 g/L和100 g/L的条件下,镀层受电流密度的影响较小,Co含量稳定在96%左右,表面均匀致密,显微硬度高达425 HV,耐磨性较好。  相似文献   

8.
通过正交试验对45钢上复合化学镀Ni–P–Al2O3的工艺条件进行优化,得到的最佳工艺条件为:NiSO4·7H2O 25 g/L,NaH2PO2·H2O 30 g/L,CH3COONa 15 g/L,NaF 0.4 g/L,乳酸20 mL/L,硫脲20 mg/L,十二烷基磺酸钠0.1 g/L,纳米α-Al2O35 g/L,温度90°C,pH 4.8,时间2 h,转速300 r/min。分别采用扫描电镜、能谱仪、维氏硬度仪和电化学工作站对镀层的微观形貌、组成、显微硬度以及耐蚀性进行表征。在最优工艺下制备的Ni–P–Al2O3复合镀层,Al2O3微粒分布均匀,结构致密,显微硬度为204 HV,耐蚀性均优于Ni–P镀层。  相似文献   

9.
在45钢上制得复合化学镀镍–磷–多壁碳纳米管(MWNTs)镀层,镀液配方及工艺条件为:NiSO_4·6H_2O 30 g/L,NaH_2PO_2·H_2O 25 g/L,乙酸钠15 g/L,柠檬酸钠15 g/L,乳酸25 mg/L,醋酸铅15 mg/L,MWNTs 1 g/L,柠檬酸0.5 g/L,pH 4.5~4.7,温度(85±1)℃,搅拌速率200 r/min,时间2 h。利用扫描电镜、X射线衍射仪分析了复合镀层的表面形貌和结构,并采用多功能材料表面性能测试仪对复合镀层的摩擦磨损行为进行研究。结果表明,Ni–P–MWNTs复合镀层是非晶结构,MWNTs均匀地嵌埋在基质镀层中,使得Ni–P–MWNTs复合镀层的显微硬度和耐摩擦磨损性能得到显著提高。  相似文献   

10.
分别采用直流(DC)、单脉冲(PC)和换向脉冲(PRC)方式在Q235钢表面制备Ni–Cr–Mo合金镀层。镀液组成为:NiSO_4·6H_2O 131.4 g/L,CrCl_3·6H_2O 13.3 g/L,Na_2MoO_4·2H_2O 12.1 g/L,柠檬酸铵145.9 g/L,尿素60 g/L,抗坏血酸8.8 g/L,H_3BO_3 14 g/L,NH_4Br 10 g/L,十二烷基硫酸钠0.1 g/L。对比了采用不同方式电沉积所得Ni–Cr–Mo合金镀层的外观、表面形貌、元素组成、沉积速率、表面粗糙度和耐蚀性。3种方式电沉积所得合金镀层的外观均良好。单脉冲和换向脉冲电沉积合金镀层的组成相近,直流电沉积合金镀层的镍、钼含量比它们高,但铬含量较低。换向脉冲电沉积合金镀层的微观表面最均匀、致密,粗糙度最低(0.587μm),耐蚀性最好。  相似文献   

11.
在45钢上制得镍–磷–石墨烯化学复合镀层,镀液配方和工艺条件为:NiSO_4·6H_2O 30g/L,NaH_2PO_2·H_2O 25g/L,乙酸钠15g/L,柠檬酸钠15g/L,乳酸25mg/L,乙酸铅15mg/L,石墨烯100mg/L,APEO80mg/L,pH4.6,温度82°C,超声波功率150W,时间2h。利用扫描电镜分析了复合镀层的表面形貌,采用多功能材料表面性能测试仪对复合镀层的摩擦磨损行为进行研究,通过塔菲尔曲线和电化学阻抗谱测量研究了其在3.5%NaCl溶液中的电化学腐蚀行为。结果表明,镍–磷–石墨烯复合镀层属于非晶态结构,石墨烯均匀地嵌埋在基质镀层中,使镍–磷–石墨烯复合镀层的显微硬度、耐磨性和耐蚀性均显著提高。  相似文献   

12.
采用电沉积法在铁片上制备Ni–W–微米SiC复合镀层。研究了微米SiC颗粒用量、pH、电流密度等工艺参数对复合镀层中SiC颗粒含量的影响,得到最优工艺为:NiSO_4·6H_2O 20 g/L,Na_2WO_4·2H_2O 50 g/L,Na_3C_6H_8O_7·2H_2O 50 g/L,微米SiC颗粒20g/L,pH7.0,电流密度2.5 A/dm~2。采用X射线衍射仪、扫描电子显微镜、能谱仪和浸泡腐蚀试验表征了Ni–W–微米SiC复合镀层的晶相结构、表面形貌、元素组成和耐蚀性。采用红外光谱法初步探讨了SiC微米颗粒的沉积机理。结果表明,SiC微米颗粒在复合镀层中的质量分数可高达42.5%,SiC微米颗粒的存在能消除Ni–W合金镀层的裂纹,从而提高镀层对基体的保护能力。镀液中的阴离子可能对SiC微米颗粒的沉积过程有一定的影响。  相似文献   

13.
田柱  李风  舒畅 《电镀与涂饰》2013,(12):17-20
以烧结NdFeB永磁体为基体,采用复合电沉积法制备了Ni–CeO2复合镀层。镀液组成与工艺条件为:NiSO4250 g/L,NiCl240 g/L,H3BO335 g/L,纳米CeO210 g/L,十二烷基硫酸钠0.05 g/L,温度45°C,电流密度3 A/dm2,时间30 min。对比研究了纯镍镀层和Ni–CeO2复合镀层的表面形貌、结构组成、耐蚀性、结合力、显微硬度等性能。结果表明,与纯镍镀层相比,Ni–CeO2复合镀层结晶更为细致,在3.5%NaCl溶液中的耐蚀性提高,显微硬度由纯镍镀层的358.7 HV提高至428.3 HV,结合力明显增强。  相似文献   

14.
以海上平台输水管道系统用A106钢为基体电镀Ni–W–P合金。镀液组成和工艺条件为:NiSO_4·6H_2O 100~200 g/L,Na_2WO_4·2H_2O 10~100 g/L,H_3PO_3 10~50 g/L,自制YC-5202添加剂10~40 m L/L,电流密度1~10 A/dm~2,pH 2~8,温度40~80°C。研究了热处理温度对合金镀层微观结构和显微硬度的影响,并表征了合金镀层的微观形貌、结合力、耐中性盐雾腐蚀、耐H_2S腐蚀和抗冲蚀性能。随热处理温度升高,镀层由非晶态转变为晶态,显微硬度先升高后降低。Ni–W–P合金镀层表面平整、致密,结合力良好,经720 h中性盐雾试验后的保护等级为10级,经168 h H2S腐蚀试验后的平均腐蚀速率为0.007 6 mm/a,仅发生轻度腐蚀;在冲蚀试验中的损耗速率为0.656 mg/(h·cm~2),比基材的损耗速率低70%。  相似文献   

15.
利用钨酸钠通过电沉积在S135高强度钻杆用钢表面制备了Fe–Ni–W合金镀层。采用极化曲线测量以及结合力、显微硬度、厚度等测试研究了Fe–Ni–W合金镀层的耐蚀性和机械性能,并利用X射线衍射分析了其结构。结果表明,在其他条件相同(即Fe SO4·7H2O 30 g/L,Ni SO4·6H2O 40 g/L,C6H8O7·H2O适量,添加剂YC-2 1~5 g/L,pH 6.5,温度70°C,电流密度4 A/dm2,时间1 h)的情况下,改变钨酸钠的质量浓度(20~60 g/L),所得镀层的性能也不相同。当钨酸钠质量浓度为50 g/L时,镀层各种性能指标均达到最佳,镀层中主要含有Ni17W3和Fe Ni3等物相。  相似文献   

16.
采用单液法电刷镀制备200μm厚的Ni/Co多层膜镀层。镀液配方和工艺为:NiSO_4·7H_2O 250 g/L,CoSO_4·7H_2O 17~50 g/L,H_3BO_3 35 g/L,NaCl 20 g/L,十二烷基硫酸钠0.1~0.5 g/L,pH 2.0~5.0,温度40~60℃。通过单因素试验确定镀液的CoSO_4·7H_2O与NiSO_4·7H_2O的质量浓度比为1∶10,镍、钴单层的沉积电压分别为9.0 V和3.5 V。通过对比不同厚度单层膜的Ni/Co多层膜镀层的表面形貌、元素组成、表面粗糙度、显微硬度和耐磨性能,分析单层膜厚度变化对Ni/Co多层膜镀层性能的影响,最终确定较优单层膜厚度为4μm。所得Ni/Co多层膜镀层的显微硬度为496.8 HV,摩擦因数为0.42,耐磨性最好。  相似文献   

17.
以纯铜棒为基体,采用复合电镀技术制备了Ni–Al2O3复合电极。镀液组成和工艺条件为:Ni SO4·6H2O 250~300 g/L,Ni Cl2·6H2O 40~50 g/L,Al2O3 10~60 g/L,H3BO3 35~40 g/L,十二烷基硫酸钠0.05 g/L,p H 3~4,阴极平均电流密度2~6 A/dm2,温度30~70°C,时间3 h。分析了镀液中Al2O3颗粒添加量、温度和阴极电流密度对Ni–Al2O3复合镀层Al2O3含量、均匀性和显微硬度的影响。分别以Ni–Al2O3复合电极和纯铜电极为工具,对W7Mo4Cr4V2Co5高速钢进行电火花加工(EDM)试验。在Al2O3添加量30 g/L、阴极电流密度3 A/dm2、温度50°C的条件下,所得镀层厚度为100μm,Al2O3颗粒体积分数为14.48%,显微硬度为434.72 HV,综合性能最佳。Ni–Al2O3复合电极在EDM试验中的相对质量损耗约为纯铜电极的1/5,抗电蚀性更优。  相似文献   

18.
采用两步复合镀法在45钢上制备了镍-磷-金刚石复合镀层,即:先采用基础镀液(由NiSO_4·6H_2O 25 g/L、Na H_2PO_2·H_2O25 g/L、CH_3COONa·3H_2O 15 g/L和Na_3C_6H_5O_7·2H_2O 10 g/L组成,pH 4~5,温度80~85℃)化学镀镍-磷合金30 min,再在基础镀液中加入0.4 g/L金刚石微粒(平均粒径10μm),在机械间歇搅拌(搅拌10 s后停10 s)下复合镀10 min。然后在不同温度(150~450℃)下热处理1 h,研究热处理温度对复合镀层显微硬度、组织结构和摩擦学性能的影响。经350℃热处理的镍-磷-金刚石复合镀层的显微硬度为1 100 HV,摩擦学性能与进口摩擦垫片相当。  相似文献   

19.
在由FeSO4·7H2O 30 g/L、Co SO4·7H2O 30 g/L、H3BO3 30 g/L和抗坏血酸1 g/L组成的Co–Fe合金镀液中添加10 g/L自制纳米Zr O2溶胶,电沉积得到Co–Fe–Zr O2复合镀层。研究了电流密度对Co–Fe–Zr O2复合镀层微观结构、厚度、显微硬度和耐蚀性的影响。结果表明,随电流密度从5 mA/cm2增大到30 mA/cm2,Co–Fe–ZrO2复合镀层的晶粒细化,ZrO2颗粒复合量、厚度和显微硬度均增大,耐蚀性先改善后变差。当电流密度为25 mA/cm2时,Co–Fe–ZrO2复合镀层的厚度为18.6μm,显微硬度为349 HV,表面平整致密,耐蚀性最佳。  相似文献   

20.
采用电刷镀工艺在45钢表面制备了Ni-W-Co-n-Sic(纳米碳化硅)复合镀层,镀液组成和工艺条件为:NiSO_4·7H_2O 393 g/L,Na_2WO_4·2H_2O 23 g/L,H_3BO_3 31 g/L,柠檬酸42 g/L,Na_2SO_4 6.5 g/L,CoSO_4·7H_2O 3 g/L,NaF 5g/L,n-SiC 0~30 g/L,温度25~45℃,pH 1.4~2.4,电压5~7 V,镀笔速率0.8 m/s,时间25 min。以Ni-W-Co合金镀层的外观为指标,筛选得到较适合的复合电刷镀电压为6 V。研究了镀液n-SiC含量对镀层的组织结构、显微硬度和摩擦磨损性能的影响。结果表明,镀液中n-SiC含量为15~25 g/L时,可以获得颗粒均匀分布、无微裂纹的Ni-W-Co-n-SiC复合镀层。随镀液中n-SiC含量增大,复合镀层的晶化程度、Ni固溶度和显微硬度均提高,耐磨性改善,但摩擦因数的变化不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号