首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
为了能够准确估计锂离子电池的荷电状态(SOC),同时对电池实际可用的最大充、放电功率进行预测,在研究电池充、放电过程中的滞回现象的基础上,建立基于电压滞回特性的二阶RC等效电路模型。为了避免因噪声统计特性造成的误差,将H∞滤波算法应用到锂离子电池的SOC估计中,减少了估计过程中的模型误差和算法误差,提高了估计的鲁棒性。将电池电压、电流和SOC的估计值作为联合约束条件预测锂离子电池实际可用的最大充、放电功率,对电池做脉冲充、放电实验,实验分析表明,与混合脉冲功率特性(HPPC)测试方法相比,联合约束算法提高了预测电池功率的准确性。  相似文献   

2.
张方亮 《电源学报》2018,16(5):124-129
针对锂离子电池在变电流放电过程中荷电状态SOC(state of charge)估算精度的问题,提出了一种基于改进扩展卡尔曼滤波EKF(extended Kalman filter)算法的新估算方法。首先,通过放电实验和混合脉冲功率特性HPPC(hybrid pulsepower characteristic)实验,分析计算了等效电路模型参数;然后,利用该方法获得了该模型参数与放电倍率和SOC之间的关系,提出了一种估算SOC时在线修正开路电压和欧姆内阻的新原理和方法;最后,通过变电流放电的SOC估算结果,验证了该改进算法的可行性与有效性,从而解决了锂离子电池在复杂工况下估算精度不足的问题。  相似文献   

3.
为了准确预测混合动力汽车(HEV)动力电池的SOC,将安时法、开路电压法和卡尔曼滤波算法结合起来,并考虑温度、滞环效应等因素对SOC的影响,提出了新的SOC估算方法。通过建立电池的二阶动态RC模型并且采用双无味卡尔曼滤波(DUKF)的方法估算电池模型的状态和参数,使电池的SOC估算达到更高的精度。通过蓄电池的放电实验初步确定电池的模型参数以及电池的开路电压(OCV)与SOC的关系曲线,并且采用matlab仿真验证了DUKF方法对SOC估算的准确性。  相似文献   

4.
锂离子电池温度空间分布的不均匀性随着放电倍率的增大而加剧,严重影响电池寿命和安全性。针对锂离子电池放电过程中温度空间分布不均匀的情况,提出一种新的基于区域电压的不均匀发热模型,用来实时预测电池温度分布。考虑电池尺寸和热特性,将电池分为九个区域并进行开路电压测试,实时记录每个区域表面温度变化,采用每10%荷电状态(SOC)下降期间测量的表面温度和环境温度数据计算得到区域电压,根据区域电压获得电池的区域发热量,并建立三维仿真模型得到电池温度空间分布。使用该不均匀发热模型预测了放电倍率为0.5C、1C、2C、3C和4C时的电池温度空间演变,仿真结果显示该模型能捕获温度的不均匀分布,并通过实验验证,温度误差在1℃以内,相对误差在5%以内,表明该模型能够对温度分布进行有效监测。  相似文献   

5.
锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方法利用Huber-M估计改进卡尔曼滤波器的鲁棒性,并将基于GRU-RNN所估算的锂离子电池SOC值作为改进卡尔曼滤波器的观测量。在两组锂离子电池数据集上分别进行锂离子电池SOC估算实验。实验结果表明,基于GRU-RNN和HKF融合方法的锂离子电池SOC估算模型不仅能够准确地实现锂离子电池SOC估算,而且能够降低测量误差及异常值对估算结果的影响,使锂离子电池SOC估算结果快速且精确收敛。  相似文献   

6.
王顺利  胡宜芬 《电源学报》2018,16(4):162-167
航空锂离子电池组工作不同于通常动力锂离子电池组,是长时间搁置、间歇补充电和瞬时大电流放电的工作状态,其过放电工作特性对能量管理和航空安全至关重要。基于反应机理分析和过放电实验研究,通过电池等效模型构建和状态空间描述,实现过放电过程分析,获得极限条件下的电池工作特性。通过使用7串45 Ah航空锂离子电池组进行测试验证该方法的可行性和精度。实验结果表明,在电池组过放电过程中,输出电压存在缓慢变化、快速变化和陡坡变化3个阶段,输出电压跟踪误差低于5%,确定放电截至电压(拐点)为20.14 V;通过宽温度范围工作特性的研究,确立最佳工作温度范围为5~35℃,基于加热片和散热器的方式实现了其最佳温度范围控制。该方法能够实现对过放电特性准确数学描述,有效分析航空锂离子电池组的工作特性,提供工作特征突变关键点监测方法,为航空安全的关键性突破奠定基础。  相似文献   

7.
在电池储能系统的实际工程中,电池组荷电状态(state of charge,SOC)估算精度越来越受重视。电池组容量、运行环境、循环时间和充放电倍率等都将影响电池组的SOC估算精度,采用单一的电池模型和数据模型很难获得准确的SOC。提出了一种基于信息融合技术的锂离子电池SOC估算方法,主要基于开路电压(open circuit voltage,OCV)-SOC曲线进行。根据锂离子电池运行特性,把OCV-SOC曲线空间划分为锂电池稳定运行区间、识别校正区间、过充区间和过放区间,并据此重新定义锂离子电池运行模式。然后根据其运行模式,在不同运行区间内对锂电池的估算模型进行切换和优化。采取基于信息融合的SOC估算方法,不断修正消除估算模型在运行状态下产生的各种误差,得到较为精确的SOC估算值。最后搭建实验平台,以某储能电站的实际储能工况对该算法进行实验验证,结果表明,上述SOC估算算法在实际锂电池储能系统应用中具有较强的可行性和实用性。  相似文献   

8.
提出并实现了一种车用动力锂离子电池稳态特性参数的数学模型,该模型针对混合动力车用8Ah锂离子电池,选取对电池SOC有重要影响的性能参数(电压、电流、温度等),设计相关实验(主要是倍率充放电实验和开路电压SOC关系实验);应用实验数据,通过插值、拟合等方法补充实验缺省数据,建立电池稳态特性参数Map图,用以估算电池的SOC,对建立的Map用实际工况曲线进行仿真。仿真结果表明,应用建立的Map图,对电池稳态SOC查询估算的精度可以达到4%以内。  相似文献   

9.
锂离子电池荷电状态(SOC)的准确估算是电动汽车稳定、高效、安全运行的基础。研究了锂离子电池恒流充放电特性和极化效应;分析了锂离子电池在恒流充放电工况下的端电压、电流、SOC之间的关系特性;提出了基于多维线性插值的锂离子电池SOC估算算法。通过模型仿真和台架试验,验证了多维线性插值SOC估算算法的精度和适用性。实验结果表明,多维线性插值SOC估算算法具有较高的精度和普遍的适用性,在电动汽车实时工况下具有很好的应用价值。  相似文献   

10.
电动汽车荷电态SOC的准确预测对于避免电池的不合理应用,限制电池最大放电电流,预测电动汽车的续驶里程等方面至关重要.目前相关研究大多利用电量估算SOC值,以氢镍电池作为研究对象,采用能量守恒方法,并采用开路电压、温度、内阻、循环次数、自放电率等多种因素对其修正估算SOC的值.根据电池数据分别建立影响因素与SOC的静态模型;基于能量守恒建立电池SOC估算的动态模型;使用Matlab进行动态模型的仿真实验,得到电动汽车在实际行驶过程中变电流的仿真结果,仿真结果误差在5%之内.  相似文献   

11.
锂离子电池组合前后的特性研究   总被引:1,自引:0,他引:1  
张华辉  齐铂金  袁学庆  郑敏信 《电池》2007,37(4):294-296
为更好地使用锂离子电池组,更精确地估算电池的荷电状态(SOC),对锂离子电池组合前后进行了常温4.0 A充放电、常温7.5 A放电、-20℃下4.0A放电以及55℃下4.0A放电等实验测试.实验结果显示:锂离子电池成组后的充放电特性有所下降,电池组总容量下降为单体电池的90%左右,SOC偏低,工作电压的下降速率在放电末期急剧上升,可达平台区的50倍.对电池组的一致性进行了分析,得出锂离子电池成组时应充分考虑单体电池的一致性;在估算SOC时,采用电池组参数和单体电池参数相结合的方式.  相似文献   

12.
为了估算锂离子动力电池的荷电状态(SOC)。基于锂电池外特性的实验数据,建立电池等效电路模型,用分段线性回归的方法来辨识模型参数。在Matlab中搭建电池模型,并研究了扩展卡尔曼滤波(EKF)算法在估算SOC中的应用。结果表明,所选择的Thevinin模型能真实地模拟电池特性,该算法能有效地解决SOC初值估算不准和累积误差的问题。  相似文献   

13.
针对纯电动汽车锂离子电池荷电状态(SOC)在环境温度和放电电流变化较大的情况下估算精度较低的问题,采用了一种基于改进Thevenin模型的扩展卡尔曼滤波算法(EKF)。根据电池性能模型,把电池容量作为状态变量,把影响SOC估算精度的环境温度和放电电流作为修正量,采用扩展卡尔曼滤波算法提高SOC估算精度。实验结果表明,该方法提高了SOC估算精度,可用于电动汽车电池管理系统。  相似文献   

14.
庞辉  郭龙  武龙星  晋佳敏  刘凯 《电工技术学报》2021,36(10):2178-2189
建立准确合理的锂离子电池数学模型,精确估算锂离子电池(LIB)终端电压及荷电状态(SOC)对于开发高效实用的电池管理系统十分重要.首先,该文建立一种改进的环境温度依赖的锂离子电池双极化(DP)模型.然后,基于锂离子电池的动态实验数据,利用遗忘因子最小二乘法(FFLS)对该锂离子电池模型关键参数进行辨识,并将其拟合为环境温度的连续函数.同时,根据扩展卡尔曼滤波(EKF)算法,提出一种适用于不同环境温度的锂离子电池荷电状态估计方法.最后,采用?10℃、20℃和50℃下动态压力测试(DST)和US06循环工况的实验数据,对该文的锂离子电池模型进行仿真分析和验证.结果表明,该文提出的改进DP模型能够准确反映环境温度对模型参数的影响,且在电池终端电压和SOC估算方面具有较高的精度和较宽的温度适用范围.  相似文献   

15.
对锂离子电池荷电状态(SOC)进行准确估算是保证电池管理系统安全稳定运行的关键。常用的安时积分法存在累积误差,卡尔曼滤波算法需要建立精确的电池模型,神经网络法不依赖具体的锂电池模型,能够反映锂电池的非线性关系,因而受到广泛关注,然而传统神经网络估算SOC训练时间长、精度低。针对以往电池SOC估算精度低等问题,文中提出粒子群(PSO)优化极限学习机(ELM)神经网络的方法。以电池电压、电流和温度作为PSO-ELM模型的输入向量,以SOC作为输出向量。将实验获得的数据导入模型进行训练和测试,采用PSO对ELM随机给定的输入权值和隐含层阈值进行寻优。仿真结果表明,与BP神经网络的预测结果相比,文中估算SOC的方法具有更高的精度。  相似文献   

16.
针对电动汽车用锂离子动力电池热特性,以3.2 Ah锂离子动力电池为研究对象,建立了锂离子动力电池的热模型。分别对锂离子单体电池在不同放电倍率、不同环境温度下的热特性进行了仿真和实验。结果表明,锂离子电池温升呈现非线性特征,在放电末期温升速率明显增大;锂离子电池的温升和温升速率随着放电倍率的增大而增大;仿真温度和实验温度变化趋势基本一致,说明所建立的数学模型能够较准确地描述锂离子单体电池放电过程热行为。进行锂离子单体电池热特性仿真和分析,可以为热管理系统设计提供依据。  相似文献   

17.
许参  李俊松 《电源技术》2012,36(3):328-331
为了利用锂离子电池放电特性来延长移动设备的使用时间,分析了锂离子电池容量消耗的特点,提出了基于该容量消耗特点的考虑电池放电特性的电压调节策略BADVS。把锂离子电池放电过程分为线性放电和非线性放电两个阶段,提出的BADVS策略在不同的放电阶段采用不同的优化目标和不同的优化方法。仿真实验结果表明,该策略在电池放电的整个过程中都能有效地减少电池容量消耗。  相似文献   

18.
针对锂离子电池荷电状态(state of charge, SOC)预测问题,采用长短期记忆循环神经网络(long short-term memory, LSTM)搭建电池SOC预测模型。利用直流电子负载对18650锂离子电池进行多工况放电,将电池电压、放电电流作为模型输入。将采集数据分为训练集、验证集和测试集,在训练集上训练模型,在验证集上调节模型超参数,在测试集上测试模型性能。采用带动量的随机梯度下降(stochastic gradient descent, SGD)进行权重更新,并加入Dropout正则化方法。在动态放电情况下,使用所提方法预测电池SOC最大绝对误差为2.0%,平均绝对误差为1.05%,验证了该方法的可行性。测试结果表明,在模型训练过程中加入Dropout正则化方法,可以有效降低网络的过拟合现象,增强模型的泛化能力。  相似文献   

19.
为定量分析电流、开路电压、环境温度等因素对电池荷电状态(SOC)变化率的影响,提出采用灰色理论中的灰色关联分析方法确定各个因素与SOC的灰色关联度(r)。通过建立灰色关联分析模型分析锂离子电池在不同工况下放电实验数据,确定上述因素对SOC灰色关联度,实验结果表明:放电电流对电池SOC影响最为显著(r=0.869 0),其次为开路电压(r=0.600 5),环境温度影响最小(r=0.583 1)。试验结果验证了灰色关联分析模型可定量给出每种因素的影响程度,该研究可为优化SOC预测模型和进一步提高电池SOC估算精度提供理论依据。  相似文献   

20.
SOC(state of charge)的准确估算是电池管理系统的重要目标之一。针对传统神经网络方法在磷酸铁锂电池SOC估算中存在计算复杂、学习时间过长的问题,提出了一种新的基于ELM(extreme learning machine)的电池SOC估算方法。利用电池充放电系统完成磷酸铁锂电池在不同电流下的放电实验,获得实时测量的电压、电流。运用实验获得的数据对模型进行训练和预测,将预测效果与BP(back propagation)神经网络和SVM(support vector machine)进行对比,研究ELM在SOC预测中的可行性和优势。经分析可知,基于ELM的磷酸铁锂电池荷电状态估算模型的精度更高,并且网络训练速度得到大幅提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号