共查询到20条相似文献,搜索用时 0 毫秒
1.
Toh Koon Charlie Neo Dan Ventura 《Pattern recognition letters》2012,33(1):92-102
Though the k-nearest neighbor (k-NN) pattern classifier is an effective learning algorithm, it can result in large model sizes. To compensate, a number of variant algorithms have been developed that condense the model size of the k-NN classifier at the expense of accuracy. To increase the accuracy of these condensed models, we present a direct boosting algorithm for the k-NN classifier that creates an ensemble of models with locally modified distance weighting. An empirical study conducted on 10 standard databases from the UCI repository shows that this new Boosted k-NN algorithm has increased generalization accuracy in the majority of the datasets and never performs worse than standard k-NN. 相似文献
2.
k-nearest neighbor (k-NN) classification is a well-known decision rule that is widely used in pattern classification. However, the traditional implementation of this method is computationally expensive. In this paper we develop two effective techniques, namely, template condensing and preprocessing, to significantly speed up k-NN classification while maintaining the level of accuracy. Our template condensing technique aims at “sparsifying” dense homogeneous clusters of prototypes of any single class. This is implemented by iteratively eliminating patterns which exhibit high attractive capacities. Our preprocessing technique filters a large portion of prototypes which are unlikely to match against the unknown pattern. This again accelerates the classification procedure considerably, especially in cases where the dimensionality of the feature space is high. One of our case studies shows that the incorporation of these two techniques to k-NN rule achieves a seven-fold speed-up without sacrificing accuracy. 相似文献
3.
Selene Hernández-Rodríguez Author Vitae J. Fco Martínez-Trinidad Author Vitae Author Vitae 《Pattern recognition》2010,43(3):873-5456
The k nearest neighbor (k-NN) classifier has been a widely used nonparametric technique in Pattern Recognition, because of its simplicity and good performance. In order to decide the class of a new prototype, the k-NN classifier performs an exhaustive comparison between the prototype to classify and the prototypes in the training set T. However, when T is large, the exhaustive comparison is expensive. For this reason, many fast k-NN classifiers have been developed, some of them are based on a tree structure, which is created during a preprocessing phase using the prototypes in T. Then, in a search phase, the tree is traversed to find the nearest neighbor. The speed up is obtained, while the exploration of some parts of the tree is avoided using pruning rules which are usually based on the triangle inequality. However, in soft sciences as Medicine, Geology, Sociology, etc., the prototypes are usually described by numerical and categorical attributes (mixed data), and sometimes the comparison function for computing the similarity between prototypes does not satisfy metric properties. Therefore, in this work an approximate fast k most similar neighbor classifier, for mixed data and similarity functions that do not satisfy metric properties, based on a tree structure (Tree k-MSN) is proposed. Some experiments with synthetic and real data are presented. 相似文献
4.
Jun Toyama Author Vitae Author Vitae Hideyuki Imai Author Vitae 《Pattern recognition》2010,43(4):1361-1372
A novel approach for k-nearest neighbor (k-NN) searching with Euclidean metric is described. It is well known that many sophisticated algorithms cannot beat the brute-force algorithm when the dimensionality is high. In this study, a probably correct approach, in which the correct set of k-nearest neighbors is obtained in high probability, is proposed for greatly reducing the searching time. We exploit the marginal distribution of the k th nearest neighbors in low dimensions, which is estimated from the stored data (an empirical percentile approach). We analyze the basic nature of the marginal distribution and show the advantage of the implemented algorithm, which is a probabilistic variant of the partial distance searching. Its query time is sublinear in data size n, that is, O(mnδ) with δ=o(1) in n and δ≤1, for any fixed dimension m. 相似文献
5.
We develop a new non-parametric information theoretic clustering algorithm based on implicit estimation of cluster densities using the k-nearest neighbors (k-nn) approach. Compared to a kernel-based procedure, our hierarchical k-nn approach is very robust with respect to the parameter choices, with a key ability to detect clusters of vastly different scales. Of particular importance is the use of two different values of k, depending on the evaluation of within-cluster entropy or across-cluster cross-entropy, and the use of an ensemble clustering approach wherein different clustering solutions vote in order to obtain the final clustering. We conduct clustering experiments, and report promising results. 相似文献
6.
To protect individual privacy in data mining, when a miner collects data from respondents, the respondents should remain anonymous. The existing technique of Anonymity-Preserving Data Collection partially solves this problem, but it assumes that the data do not contain any identifying information about the corresponding respondents. On the other hand, the existing technique of Privacy-Enhancing k-Anonymization can make the collected data anonymous by eliminating the identifying information. However, it assumes that each respondent submits her data through an unidentified communication channel. In this paper, we propose k-Anonymous Data Collection, which has the advantages of both Anonymity-Preserving Data Collection and Privacy-Enhancing k-Anonymization but does not rely on their assumptions described above. We give rigorous proofs for the correctness and privacy of our protocol, and experimental results for its efficiency. Furthermore, we extend our solution to the fully malicious model, in which a dishonest participant can deviate from the protocol and behave arbitrarily. 相似文献
7.
In this paper, the conventional k-modes-type algorithms for clustering categorical data are extended by representing the clusters of categorical data with k-populations instead of the hard-type centroids used in the conventional algorithms. Use of a population-based centroid representation makes it possible to preserve the uncertainty inherent in data sets as long as possible before actual decisions are made. The k-populations algorithm was found to give markedly better clustering results through various experiments. 相似文献
8.
The statistical properties of the k-NN estimators are investigated in a design-based framework, avoiding any assumption about the population under study. The issue of coupling remotely sensed digital imagery with data arising from forest inventories conducted using probabilistic sampling schemes is considered. General results are obtained for the k-NN estimator at the pixel level. When averages (or totals) of forest attributes for the whole study area or sub-areas are of interest, the use of the empirical difference estimator is proposed. The estimator is shown to be approximately unbiased with a variance admitting unbiased or conservative estimators. The performance of the empirical difference estimator is evaluated by an extensive simulation study performed on several populations whose dimensions and covariate values are taken from a real case study. Samples are selected from the populations by means of simple random sampling without replacement. Comparisons with the generalized regression estimator and Horvitz-Thompson estimators are also performed. An application to a local forest inventory on a test area of central Italy is considered. 相似文献
9.
High-dimensional problems arising from robot motion planning, biology, data mining, and geographic information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph of a data set is obtained by connecting each point to its k closest points. As the research in the above-mentioned fields progressively addresses problems of unprecedented complexity, the demand for computing knn graphs based on arbitrary distance metrics and large high-dimensional data sets increases, exceeding resources available to a single machine. In this work we efficiently distribute the computation of knn graphs for clusters of processors with message passing. Extensions to our distributed framework include the computation of graphs based on other proximity queries, such as approximate knn or range queries. Our experiments show nearly linear speedup with over 100 processors and indicate that similar speedup can be obtained with several hundred processors. 相似文献
10.
A k-factor of graph G is defined as a k-regular spanning subgraph of G. For instance, a 2-factor of G is a set of cycles that span G. 2-factors have multiple applications in Graph Theory, Computer Graphics, and Computational Geometry. We define a simple 2-factor as a 2-factor without degenerate cycles. In general, simple k-factors are defined as k-regular spanning subgraphs where no edge is used more than once. We propose a new algorithm for computing simple k-factors for all values of k?2. 相似文献
11.
Ruijuan Li 《Information Processing Letters》2010,110(16):651-654
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. In this paper, we show that if G is a ⌊3k/2⌋-connected graph of order n?100k, and d(u)+d(v)?n for any two vertices u and v with d(u,v)=2, then G is k-ordered hamiltonian. Our result implies the theorem of G. Chen et al. [Ars Combin. 70 (2004) 245-255] [1], which requires the degree sum condition for all pairs of non-adjacent vertices, not just those distance 2 apart. 相似文献
12.
Applying k-Means to minimize the sum of the intra-cluster variances is the most popular clustering approach. However, after a bad initialization, poor local optima can be easily obtained. To tackle the initialization problem of k-Means, we propose the MinMax k-Means algorithm, a method that assigns weights to the clusters relative to their variance and optimizes a weighted version of the k-Means objective. Weights are learned together with the cluster assignments, through an iterative procedure. The proposed weighting scheme limits the emergence of large variance clusters and allows high quality solutions to be systematically uncovered, irrespective of the initialization. Experiments verify the effectiveness of our approach and its robustness over bad initializations, as it compares favorably to both k-Means and other methods from the literature that consider the k-Means initialization problem. 相似文献
13.
We say that a distribution over {0,1}n is (ε,k)-wise independent if its restriction to every k coordinates results in a distribution that is ε-close to the uniform distribution. A natural question regarding (ε,k)-wise independent distributions is how close they are to some k-wise independent distribution. We show that there exist (ε,k)-wise independent distributions whose statistical distance is at least nO(k)·ε from any k-wise independent distribution. In addition, we show that for any (ε,k)-wise independent distribution there exists some k-wise independent distribution, whose statistical distance is nO(k)·ε. 相似文献
14.
Zonal k-l based large eddy simulation (LES) approaches are presented. To reduce computational demands, near walls, Reynolds averaged Navier-Stokes (RANS) like modelling is used. The interface location for the differing models is either explicitly specified, or, based on length scale compatibility, allowed to naturally locate. With the latter approach the location is strongly grid controlled. When explicitly specified (based on turbulence physics grounds), to enhance results length scale smoothing is implemented. Using standard established LES and RANS model constants the zonal methods are shown to reproduce a satisfactory law of the wall. The approaches are implemented in both cell-vertex and cell-centred codes with similar results being found. Various other sensitivity studies are performed. These show that, as with standard LES, predictions are most sensitive to filter definition, first off wall grid node normal positions and temporal scheme order. For a non-isothermal periodic ribbed channel, the new zonal LES predictions are found to be significantly more accurate than those for an established RANS model and also LES. 相似文献
15.
Dejan Deli? 《Information Processing Letters》2010,110(16):662-665
Let k be a positive integer, and let G=(V,E) be a graph with minimum degree at least k−1. A function f:V→{−1,1} is said to be a signed k-dominating function (SkDF) if ∑u∈N[v]f(u)?k for every v∈V. An SkDF f of a graph G is minimal if there exists no SkDF g such that g≠f and g(v)?f(v) for every v∈V. The maximum of the values of ∑v∈Vf(v), taken over all minimal SkDFs f, is called the upper signed k-domination numberΓkS(G). In this paper, we present a sharp upper bound on this number for a general graph. 相似文献
16.
Adil M. Bagirov Author Vitae Julien Ugon Author VitaeAuthor Vitae 《Pattern recognition》2011,44(4):866-876
The k-means algorithm and its variations are known to be fast clustering algorithms. However, they are sensitive to the choice of starting points and are inefficient for solving clustering problems in large datasets. Recently, incremental approaches have been developed to resolve difficulties with the choice of starting points. The global k-means and the modified global k-means algorithms are based on such an approach. They iteratively add one cluster center at a time. Numerical experiments show that these algorithms considerably improve the k-means algorithm. However, they require storing the whole affinity matrix or computing this matrix at each iteration. This makes both algorithms time consuming and memory demanding for clustering even moderately large datasets. In this paper, a new version of the modified global k-means algorithm is proposed. We introduce an auxiliary cluster function to generate a set of starting points lying in different parts of the dataset. We exploit information gathered in previous iterations of the incremental algorithm to eliminate the need of computing or storing the whole affinity matrix and thereby to reduce computational effort and memory usage. Results of numerical experiments on six standard datasets demonstrate that the new algorithm is more efficient than the global and the modified global k-means algorithms. 相似文献
17.
In recent years, there have been numerous attempts to extend the k-means clustering protocol for single database to a distributed multiple database setting and meanwhile keep privacy of each data site. Current solutions for (whether two or more) multiparty k-means clustering, built on one or more secure two-party computation algorithms, are not equally contributory, in other words, each party does not equally contribute to k-means clustering. This may lead a perfidious attack where a party who learns the outcome prior to other parties tells a lie of the outcome to other parties. In this paper, we present an equally contributory multiparty k-means clustering protocol for vertically partitioned data, in which each party equally contributes to k-means clustering. Our protocol is built on ElGamal's encryption scheme, Jakobsson and Juels's plaintext equivalence test protocol, and mix networks, and protects privacy in terms that each iteration of k-means clustering can be performed without revealing the intermediate values. 相似文献
18.
Aristidis LikasAuthor Vitae Nikos VlassisAuthor VitaeJakob J. VerbeekAuthor Vitae 《Pattern recognition》2003,36(2):451-461
We present the global k-means algorithm which is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure consisting of N (with N being the size of the data set) executions of the k-means algorithm from suitable initial positions. We also propose modifications of the method to reduce the computational load without significantly affecting solution quality. The proposed clustering methods are tested on well-known data sets and they compare favorably to the k-means algorithm with random restarts. 相似文献
19.
Kazuyuki Amano 《Information Processing Letters》2003,87(2):111-117
We show that the number of satisfying assignments of a k-CNF formula is determined uniquely from the numbers of unsatisfying assignments for clause-sets of size up to ⌊logk⌋+2. This amount of information is also shown to be necessary. 相似文献