共查询到20条相似文献,搜索用时 0 毫秒
1.
A switchable scheme is proposed to discriminate different types of electrocardiogram (ECG) beats based on independent component analysis (ICA). The RR-interval serves as an indicator for the scheme to select between the longer (1.0 s) and the shorter (0.556 s) data samples for the following processing. Six ECG beat types, including 13900 samples extracted from 25 records in the MIT-BIH database, are employed in this study. Three conventional statistical classifiers are employed to testify the discrimination power of this method. The result shows a promising accuracy of over 99%, with equally well recognition rates throughout all types of ECG beats. Only 27 ICA features are needed to attain this high accuracy, which is substantially smaller in quantity than that in the other methods. The results prove the capability of the proposed scheme in characterizing heart diseases based on ECG signals. 相似文献
2.
3.
独立分量分析(ICA)是基于数据高阶统计特性的一种线性变换手段。目前,已广泛应用于盲信号分离和图像识别。文章将此技术引入到科学数据挖掘领域,以求解决预处理中高维复杂特征的提取问题。提出了ICA结合主成分分析(PCA)的特征提取步骤,并结合科学数据集量大的特点给出了一种快速收敛算法—FastICA。最后指出ICA特征提取技术可以应用于高维科学数据挖掘,并且较传统的特征提取技术有更高的准确率。 相似文献
4.
人脸检测中基于自适应ICA的特征提取算法 总被引:1,自引:0,他引:1
如何从图片中提取出有效特征来区分人脸与非人脸一直是一个难题.文中提出了利用自适应独立成分分析(Self-Adaptive ICA)算法对图像结构信息非常敏感的特点,有效地从大量正面人脸图片中分离出人脸的局部特征,从而利用这些局部特征基底有效地表示人脸图片.自适应ICA算法的优点是能自适应的拟合图像数据的统计性质,而不用预先设定.通过比较待检测的人脸图片与非人脸图片在这组特征基底上的投影系数,可以较好的区分二者.实验结果也表明这种特征提取方法可以找到一组很好的人脸特征基底.使用这种方法构造的弱分类器的分类准确率在相同的误检率下比Boosted Cascaded方法中的弱分类器高1% ~ 1.5%. 相似文献
5.
介绍了数据挖掘中不完整数据的研究现状及ICA与SOM的特点,提出了基于ICA与SOM的不完整数据的处理模型IVS-IDH,研究了数据之间存在相关关系且为非高斯分布时不完整数据的处理方法,在SOM基础上取得了不完整数据集的可视化分析结果,从而克服了Wang S提出的不完整数据处理方法的不足。 相似文献
6.
在独立分量分析 (Independent component analysis, ICA) 中, 寻找去除高阶相关的正交矩阵成为问题关键, 而正交矩阵具有特殊的空间结构, 组成它的每个列向量可视作 RN 中单位超球表面上一点, 当这些点彼此垂直时, 整体就组成一个正交矩阵. 自然地, 这些点可以用其球坐标来参数化. 本文通过观察正交矩阵的几何结构, 找到了任意维数的随机正交矩阵的参数表示方法, 且论证了这种表示的完备性; 同时, 对随机正交矩阵参数表示的随机性做了定量分析; 然后, 利用遗传算法对参数化正交矩阵中的参数进行搜索, 得到了分离结果. 本文称这种算法为 OICA 算法, 并给出了该算法的仿真实验. 相似文献
7.
研究地下异常体的有用信息,由于需要野外采集,所接收的瞬变电磁信号会叠加各种电磁干扰和噪声,而传统的降噪方法不能较好地对瞬变电磁接收的二次场衰减信号降噪,严重影响了利用信号对地下异常体特征的数据成图和地质状况解释.针对上述问题,提出了改进的基于独立成分分析的瞬变电磁接收信号降噪处理算法.由接收的瞬变电磁信号构成多维观测向量,利用独立成分分析方法从观测向量中分离出信号空间基向量,然后采用峰度判别准则对信号空间和噪声空间进行分离,保留二次场信号基向量,用二次场信号基向量张成信号子空间,实现降低噪声的目的.降噪后的瞬变电磁信号可以更好地反演出地下相关信息.通过对实测数据的验证,结果表明提出的算法应用于瞬变电磁法信号降噪是可行的,能有效地降低噪声并分离出二次场信号的有用信息,对提高瞬变电磁数据成图和地质状况解释质量具有较好的作用. 相似文献
8.
新颖检测中,可应用高斯混合模型建立已知数据模型,拟合数据分布,但当数据维数较高时,自由参数太多,训练需要巨大的数据采样,而ICA搜寻数据的最大统计独立表示,可以将数据从高维空间投影到低维空间。提出一种基于ICA空间高斯混合模型的新颖检测,可有效减少估测的自由参数,降低训练数据采样的苛刻要求,实验也验证了该方法的可行性。 相似文献
9.
10.
Based on independent component analysis (ICA) and self-organizing maps (SOM), this paper proposes an ISOM-DH model for the
incomplete data’s handling in data mining. Under these circumstances the data remain dependent and non-Gaussian, this model
can make full use of the information of the given data to estimate the missing data and can visualize the handled high-dimensional
data. Compared with mixture of principal component analyzers (MPCA), mean method and standard SOM-based fuzzy map model, ISOM-DH
model can be applied to more cases, thus performing its superiority. Meanwhile, the correctness and reasonableness of ISOM-DH
model is also validated by the experiment carried out in this paper. 相似文献
11.
Ping-Cheng Hsieh Author Vitae Author Vitae 《Pattern recognition》2009,42(5):978-984
Recently, in a task of face recognition, some researchers presented that independent component analysis (ICA) Architecture I involves a vertically centered principal component analysis (PCA) process (PCA I) and ICA Architecture II involves a whitened horizontally centered PCA process (PCA II). They also concluded that the performance of ICA strongly depends on its involved PCA process. This means that the computationally expensive ICA projection is unnecessary for further process and involved PCA process of ICA, whether PCA I or II, can be used directly for face recognition. But these approaches only consider the global information of face images. Some local information may be ignored. Therefore, in this paper, the sub-pattern technique was combined with PCA I and PCA II, respectively, for face recognition. In other words, two new different sub-pattern based whitened PCA approaches (which are called Sp-PCA I and Sp-PCA II, respectively) were performed and compared with PCA I, PCA II, PCA, and sub-pattern based PCA (SpPCA). Then, we find that sub-pattern technique is useful to PCA I but not to PCA II and PCA. Simultaneously, we also discussed what causes this result in this paper. At last, by simultaneously considering global and local information of face images, we developed a novel hybrid approach which combines PCA II and Sp-PCA I for face recognition. The experimental results reveal that the proposed novel hybrid approach has better recognition performance than that obtained using other traditional methods. 相似文献
12.
13.
使用独立成分分析(Independent component analysis,ICA)来建模运动风格、合成风格化的人体运动,是一种有效且有前景的手段.为了避免现有方法在设定独立成分个数或子空间结构时的人为影响,并提高风格成分的质量,提出一种基于重构式独立成分分析的运动风格分析方法.由于放弃了混合矩阵的正交性约束,一方面,拥有了更多的自由度来表示各独立成分;另一方面,利用特征的过完备性以及自身在特征选择时的稀疏特性,能够自动地确立独立成分数目.此外,通过结合基于主测地线分析的逆运动学与运动过渡技术,该方法能够合成包含多种风格、任意长度的行走运动,同时还能通过编辑特定帧的人体姿势来约束合成的结果.实验结果表明,该方法能够有效地分析出行走、跳跃和踢腿等运动中代表风格的独立成分,并根据用户对风格的编辑,实时地生成自然、平滑的运动. 相似文献
14.
摘要:为了实现高光谱降维并保留重要的光谱特征,通过独立分量分析(Independent Component Analysis, ICA)混合模型和高光谱线性模型的对比分析,提出了结合纯像元提取和ICA的高光谱数据降维方法。该方法通过估计虚拟维数(Virtual Dimensionality, VD)确定特征个数,采用自动目标生成过程(Automatic Target Generation Process, ATGP)从原始数据中提取纯像元向量,作为ICA算法的初始化向量,以负熵为目标函数产生独立分量,并通过高阶统计量筛选实现高光谱数据的降维。分类实验结果表明,该方法不仅解决了传统ICA的随机排序问题,而且与经典降维算法主分量分析(Principal Components Analysis, PCA)相比,分类精度提高了6.83%,在大大降低高光谱数据量的情况下很好的保留了高光谱数据的特征,有利于数据的后续分析和应用。 相似文献
15.
针对脑电信号存在个体差异性并易受噪声、伪迹干扰的特点,提出一种基于独立成分分析ICA的优选特征通道算法。采用ICA将通道的数据分解为N200、P300、眼电伪迹以及其他生理信号,根据这些信号对每个通道的影响程度,判定各通道是否适合进行特征提取。分别采用本方法和三种常用方法对12个被试的脑电数据进行特征通道选择,并进行N200和P300电位的辨识,经比对发现,本文方法取得了93.10%的平均分类准确率,比其他三种方法下的准确率分别高出7.27%、1.07%和75.96%。为预测任意被试的最优通道,采用最小二乘法对ICA权值和通道选择阈值之间的关系进行拟合,对三个新被试进行最优通道预测和电位的辨识,得到较高的分类准确率,说明此预测方法具有一定普适性。 相似文献
16.
基于ICA和SVM的道路网短时交通流量预测方法 总被引:2,自引:0,他引:2
交通流量预测是智能交通系统(ITS)研究的一个重要课题。通过对多个观测点交通流量数据特点进行分析,采用一种基于独立成分分析(ICA)与支持向量机(SVM)相结合的短时交通流量预测方法。首先,通过独立成分分析得到同一条道路上各个观测点的交通流量的独立源信号;接着利用支持向量机预测模型对源信号进行建模和预测,并通过遗传算法(GA)优化参数;最后将其转换为交通流量数据,得到预测结果。实例分析结果显示,该算法优于直接利用支持向量机对交通流量进行预测的方法,并能去除同一条道路上多个观测点测量数据之间的相互影响。 相似文献
17.
Micorarray data are often extremely asymmetric in dimensionality, such as thousands or even tens of thousands of genes and a few hundreds of samples. Such extreme asymmetry between the dimensionality of genes and samples presents several challenges to conventional clustering and classification methods. In this paper, a novel ensemble method is proposed. Firstly, in order to extract useful features and reduce dimensionality, different feature selection methods such as correlation analysis, Fisher-ratio is used to form different feature subsets. Then a pool of candidate base classifiers is generated to learn the subsets which are re-sampling from the different feature subsets with PSO (Particle Swarm Optimization) algorithm. At last, appropriate classifiers are selected to construct the classification committee using EDAs (Estimation of Distribution Algorithms). Experiments show that the proposed method produces the best recognition rates on four benchmark databases. 相似文献
18.
基于独立分量分析的工频干扰消除技术* 总被引:4,自引:0,他引:4
简要介绍了ICA的基本原理和快速算法,在分析地震信号和工频干扰特点的基础上,利用ICA技术来消除地震记录中的工频干扰,并与常规方法进行比较。研究结果表明ICA在有效消除工频干扰的同时,能够保护有效信号,并且在提高资料的信噪比方面更有优势,具有良好的应用前景。 相似文献
19.
This study explored a novel method based on eigenvalue decomposition (EVD) and independent component analysis (ICA) to separate the multi-component radar signal in the single channel. By exploiting the generalized periodicity of the radar signal, the proposed method structures the multi-dimensional matrix from the observed signal in single-channel through EVD, then applies ICA to the matrix to determine the basic waveform of each component, and finally reconstructs the component signals. Simulation results confirmed the effectiveness of the proposed method and compared it with other methods, although the performance of proposed approach is a bit worse than some other method when processing radar signals, the most outstanding advantage of the proposed approach is that it does not require any other known conditions, and it can recover the component signals with a satisfactory level, so it can yet be regarded as an effective method. 相似文献