首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm.  相似文献   

2.
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10−5.  相似文献   

3.
Thin cross-sections of human hairs were investigated by scanning near-field optical microscopy (SNOM) and confocal laser scanning microscopy (CLSM) after penetration of a fluorescent dye. The same samples were measured with both techniques to compare the observed structures. The images obtained from the two methods show nearly identical structures representing pathways of the dye molecules in hairs. The SNOM images provide a higher resolution than the CLSM images. Therefore, SNOM is believed to be a suitable method for investigations at a resolution of 100 nm on penetration pathways of fluorescent dyes such as the cell membrane complex pathway in cross-sections of hairs.  相似文献   

4.
We have developed a novel light source for use in a scanning near‐field optical microscope (SNOM or NSOM) based on a nanopipette whose distance from the sample surface is controlled using scanning ion conductance microscopy. The light source is based on the general principle of the chemical reaction between a fluorophore in the pipette and ligand in the bath, to produce a highly fluorescent complex that is continually renewed at the pipette tip. In these experiments we used fluo‐3 and calcium, respectively. This complex is then excited with an Ar+ laser, focused on the pipette tip, to produce the light source. This method overcomes the transmission problem of more traditional SNOM probes and has been used to acquire simultaneous high‐resolution topographic and optical images of biological samples in physiological buffer. A resolution of ~220 nm topographic and ~190 nm optical was determined through imaging fixed sea‐urchin sperm flagella. Live A6 cells were also imaged, demonstrating the potential of this system for SNOM imaging of living cells.  相似文献   

5.
Scanning near-field optical microscopes (SNOM) using the tetrahedral-tip (T-tip) with scanning tunnelling microscopy (STM) distance control have been realized in transmission and reflection mode. Both set-ups used ordinary STM current-to-voltage converters allowing measurement of metallic samples. In the transmission mode, a resolution of 10 nm to 1 nm with regard to material contrast can be achieved on binary metal samples. Because of the great near-field optical potential of the T-tip with respect to the optical resolution, it is a challenging task to find out whether these results can be transferred to non-metallic sample systems as well. This paper reports on a newly designed SNOM/STM transmission mode set-up using the tetrahedral-tip. It implements a sensitive current-to-voltage converter to widen the field of measurable sample systems. Beyond this, mechanical and optical measuring conditions are substantially improved compared to previous set-ups. The new set-up provides a basis for the routine investigation of metal nanostructures and adsorbed organic monolayers at resolutions in the 10 nm range.  相似文献   

6.
Chang WS  Bauerdick S  Jeong MS 《Ultramicroscopy》2008,108(10):1070-1075
Scanning near-field optical microscopy (SNOM) achieves a resolution beyond the diffraction limit of conventional optical microscopy systems by utilizing subwavelength aperture probe scanning. A problem associated with SNOM is that the light throughput decreases markedly as the aperture diameter decreases. Apertureless scanning near-field optical microscopes obtain a much better resolution by concentrating the light field near the tip apex. However, a far-field illumination by a focused laser beam generates a large background scattering signal. Both disadvantages are overcome using the tip-on-aperture (TOA) approach, as presented in previous works. In this study, a finite difference time domain analysis of the degree of electromagnetic field enhancement is performed to verify the efficiency of TOA probes. For plasmon enhancement, silver is deposited on commercially available cantilevered SNOM tips with 20nm thicknesses. To form the aperture and TOA in the probes, electron beam-induced deposition and focused ion beam machining were applied at the end of the sharpened tip. The results show that cantilevered TOA probes were highly efficient for improvements of the resolution of optical and topological measurement of nanostructures.  相似文献   

7.
We have developed a microfabricated SiO2 cantilever with subwavelength aperture for scanning near-field optical microscopy (SNOM), to overcome the disadvantages of conventional optical fibre probes such as low reproducibility and low optical throughput. The microcantilever, which has a SiO2 cantilever and an aperture tip near the end of the cantilever, is fabricated in a reproducible batch process. The circular aperture with a diameter of 100–150 nm is formed by a focused ion-beam technique. Incident light is directly focused on the aperture from the rear side of the cantilever using a focusing objective, and high optical throughput (10−2 to 10−3) is obtained. The microcantilever can be operated as a SNOM probe in contact mode or in dynamic mode.  相似文献   

8.
A phase-change optical disc was observed using a reflection-mode scattering-type scanning near-field optical microscope (RS-SNOM). In an a.c.-mode SNOM image, the 1.2 μm × 0.6 μm recording marks were successfully observed although the data were recorded on the groove. In contrast, no recording marks could be resolved in a d.c.-mode SNOM image. These results are in good agreement with those from a numerical simulation using the finite difference time domain method. The resolution was better than 100 nm with a.c.-mode SNOM operation and the results indicate that recording marks in phase-change optical media can be directly observed with the RS-SNOM.  相似文献   

9.
We develop a novel optical microcantilever for scanning near-field optical microscopy controlled by atomic force mode (SNOM/AFM). The optical microcantilever has the bent channel waveguide, the corner of which acts as aperture with a large tip angle. The resonance frequency of the optical microcantilever is 9 kHz, and the spring constant is estimated to be 0.59 N/m. The optical microcantilever can be operated in contact mode of SNOM/AFM and we obtain the optical resolution of about 200 nm, which is as same size as the diameter of aperture. We confirm that the throughput of optical microcantilever with an aperture of 170 nm diameter would be improved to be more than 10(-5).  相似文献   

10.
A. Naber  H. Kock  H. Fuchs 《Scanning》1996,18(8):567-571
Scanning near-field optical microscopy (SNOM) is used for lithography to avoid the resolution limiting diffraction of conventional optical methods. We have expanded a commercial SNOM for writing even complex structures on the nanometer scale. Scanning near-field optical lithography (SNOL) has been applied to conventional resists to explore its potential and the possible combination with conventional optical lithography (mix and match technique).  相似文献   

11.
12.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50° angle at the tip showed a throughput efficiency of 3.3 × 10−4 at a resolution of 100 nm.  相似文献   

13.
We describe an apertureless scanning near-field optical microscope (SNOM) based on the local second-harmonic generation enhancement resulting from an electromagnetic interaction between a probe tip and a surface. The imaging mechanisms of such apertureless second-harmonic SNOM are numerically studied. The technique allows one to achieve strongly confined sources of second-harmonic light at the probe tip apex and/or surface area under the tip. First experimental realization of this technique has been carried out using a silver-coated fibre tip as a probe. The experiments reveal a strong influence of the tip–surface interaction as well as polarization of the excitation light on images obtained with apertureless second-harmonic SNOM. The technique can be useful for studying the localized electromagnetic excitations on surfaces as well as for visualization of lateral variations of linear and nonlinear optical properties of surfaces.  相似文献   

14.
Fluorescence resonance energy transfer (FRET) between excited fluorescent donor and acceptor molecules occurs via the Förster mechanism over a range of 1–10 nm. Because of the strong (sixth power) distance dependence of the signal, FRET has been used to assess the proximity of molecules in biological systems. We used a scanning near-field optical microscope (SNOM) operated in the shared-aperture mode using uncoated glass fibre tips to detect FRET between dye molecules embedded in polyvinyl alcohol films and bound to cell surfaces. FRET was detected by selective photobleaching of donor and acceptor fluorophores. We also present preliminary results on pixel-by-pixel energy transfer efficiency measurements using SNOM.  相似文献   

15.
介绍了近年来近场光学探针技术的进展,特别是可与扫描力显徽镜结合的探针制备技术。  相似文献   

16.
We present high-resolution aperture probes based on non-contact silicon atomic force microscopy (AFM) cantilevers for simultaneous AFM and near-infrared scanning near-field optical microscopy (SNOM). For use in near-field optical microscopy, conventional AFM cantilevers are modified by covering their tip side with an opaque aluminium layer. To fabricate an aperture, this metal layer is opened at the end of the polyhedral probe using focused ion beams (FIB). Here we show that apertures of less than 50 nm can be obtained using this technique, which actually yield a resolution of about 50 nm, corresponding to λ/20 at the wavelength used. To exclude artefacts induced by distance control, we work in constant-height mode. Our attention is particularly focused on the distance dependence of resolution and to the influence of slight cantilever bending on the optical images when scanning at such low scan heights, where first small attractive forces exerted on the cantilever become detectable.  相似文献   

17.
Observation of magnetic domains with in-plane magnetisations is demonstrated by scanning near-field optical microscopy (SNOM) in reflection mode. The longitudinal and transverse magneto-optical Kerr effects are employed as the contrast mechanisms; these are observed as either a change in the polarisation of the reflected light or reflectance, depending on magnetisation direction. SNOM images of Co and Ni thin films show magneto-optical contrast depending on polarisation of the incident and detected light. For the smooth cobalt thin films, the orientation for magnetic domains is estimated, based on the correlation between the contrasts in SNOM images obtained in different polarisation configurations and the directions of the magnetic vectors of the incident and reflected light. For the nickel films with pronounced topographic structures, the resulting near-field polarisation dependencies are more complicated, suggesting that the magneto-optical contrast in SNOM images are affected by the topographic cross-talk due to the depolarisation effects on surface topographic features.  相似文献   

18.
We have demonstrated Raman spectroscopy using scanning near-field optical microscopy (SNOM). Photon tunnelling mode was employed, in which the sample is illuminated using an attenuated total reflection (ATR) configuration and the evanescent wave perturbed by the sample is picked up by a sharpened optical fibre probe. By this experimental arrangement Raman scattering from the optical fibre probe was greatly reduced, therefore we were able to excite the sample using more intense laser light compared to the illumination mode SNOM. Raman spectra of copper phthalocyanine (CuPc) were obtained in the off-resonance condition and without using surface-enhanced Raman scattering (SERS).  相似文献   

19.
A new microscope system that has the combined capabilities of a scanning near-field optical microscope (SNOM) and a scanning tunnelling microscope (STM) is described. This is achieved with the use of a single metallic probe tip. The distance between the probe tip and the sample surface is regulated by keeping the tunnelling current constant. In this mode of operation, information about the optical properties of the sample, such as its refractive index distribution and absorption characteristics, can be disassociated from the information describing its surface structure. Details of the surface structure can be studied at resolutions smaller than the illumination wavelength. The performance of the microscope is evaluated by analysing a grating sample that was made by coating a glass substrate with gold. The results are then compared with the corresponding SNOM and STM images of the grating.  相似文献   

20.
The evanescent field surrounding an exposed planar waveguide in silica is accurately measured using scanning near field optical microscopy (SNOM) and compared to models of the field distribution. Distortions in the field due to edge effects and the proximity of the mode to the surface are all detected. The characterized field is use to quantitatively explore the difference in collection efficiency between contact mode SNOM and intermittent contact mode SNOM. A strong correlation between tip oscillation amplitude and detection efficiency is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号