首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gasification of coal and PET in fluidized bed reactor   总被引:1,自引:0,他引:1  
Blended fuel comprising 23 wt.% polyethyleneterephthalate (PET) and 77 wt.% brown coal was gasified in an atmospheric fluidized bed gasifier of laboratory-scale. The gasification agent was composed of 10 vol.% O2 in bulk of nitrogen. Thermal and texture analyses were carried out to determine the basic properties of the fuel components. The influence of experimental conditions, such as the fluidized bed and freeboard temperatures on major and minor gas components and tar content, as well as features of the blended fuel gasification in comparison with the single coal gasification, were studied. In the case of coal with PET gasification, only the fluidized bed temperature showed significant influence on CO, CO2, CH4 and H2 content in the producer gas, whereas the effect of the freeboard temperature was insignificant. In single coal gasification both temperatures had considerable and almost the same influence. The content of minor components, such as ethane, ethylene, acetylene and benzene, was found to be more dependent on the freeboard temperature than on the fluidized bed temperature. It was observed that the higher the freeboard temperatures get, the lower is the concentration of the minor components, with the exception of acetylene. The absolute contents of almost all minor and tar components were approximately three times higher in blended fuel gasification than that in single coal gasification. Finally, partition of carbon (char) and selected metals into bottom and cyclone ash in gasification of both fuels is discussed.  相似文献   

2.
射流预氧化流化床气化炉中黏结性煤的反应特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王芳  曾玺  孙延林  许光文  王永刚 《化工学报》2015,66(6):2212-2219
针对现有流化床气化技术难以处理黏结性、高含灰洗中煤的问题, 中国科学院过程工程研究所开发了可处理黏结性碎煤的射流预氧化流化床气化技术, 该技术利用含氧气体将煤颗粒快速喷射送入预氧化区内破除其黏结性, 形成的半焦进入气化区内发生气化反应, 进而实现对黏结性煤的利用。本工作采用小型流化床射流预氧化反应装置研究较强黏结性煤预氧化破黏后的产物分布、半焦结构与活性变化, 并考察气化操作条件(温度、当量空气系数、水煤比等)对半焦气化行为的影响。结果表明:当预氧化区温度为950℃、当量空气系数为0.13时, 黏结性煤生成半焦的孔结构和气化活性较好;当半焦气化区温度为1000℃、当量空气系数为0.17、水蒸气与煤质量比为0.09时, 生成燃气的品质较好, 而且生成焦油中的轻质组分最多, 有利于焦油被进一步脱除。研究结果可为射流预氧化气化技术的设计放大提供基础数据。  相似文献   

3.
根据射流流化床内流体流动特性,在流体动力学行为相似的基础上,利用化学动力学软件Chemkin构建了射流床煤气化炉的动力学模型,通过体积放大引起物料停留时间及流体力学相似性的改变,研究其对射流床中物料特性的影响.分析了射流流化床几何相似放大与高径比减小放大对反应器特性的影响,认为等高径比放大停留时间较长,反应器内流体力学相似性较好,在后续工艺对出口组成要求较高时,采用此放大原则能满足要求.  相似文献   

4.
The kinetics and modelling of coal gasification were studied in the newly developed fluidized bed thermogravimetric analyzer. The total weight loss obtained from the fluidized bed reactor and the total gas product are in general agreement. The presented model for the micro‐fluidized bed reactor encompasses the kinetics of coal pyrolysis as well as the gasification reactions. For coal pyrolysis, the resulting activation energies for the individual gases were 34.7 to 59.8 kcal/mol. These values are 19 to 21 % lower than those found in the literature for similar coals. This decrease of the activation energies of the endothermic pyrolysis reactions is attributed to a gradient of temperature of 185 to 209 °C. The obtained activation energy for the CO shift reaction is 46.6 kcal/mol, increasing by 20 % from the one used in the literature. This increase of the activation energy of such a mildly exothermic reaction represents an equivalent of 170 °C gradient of temperature. The effects of temperature on the yield and the composition of the gas product are studied. Experimental results and equilibrium data are also compared. The model shows reasonably good agreement with the experimental results, except for the water gas shift reaction.
  相似文献   

5.
吴家桦  沈来宏  肖军  卢海勇  王雷 《化工学报》2008,59(8):2103-2110
针对串行流化床煤气化技术特点,以水蒸气为气化剂,在串行流化床试验装置上进行煤气化特性的试验研究,考察了气化反应器温度、蒸汽煤比对煤气组成、热值、冷煤气效率和碳转化率的影响。结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该煤气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的升高、蒸汽煤比的增加,煤气热值和冷煤气效率均会提高,但对碳转化率影响有所不同。在试验阶段获得的最高煤气热值为6.9 MJ•m-3,冷煤气效率为68%,碳转化率为92%。  相似文献   

6.
Combustion tests were carried out with Minto coal in combination with three different limestones in the University of British Columbia (UBC) pilot scale (152 mm square x 7.3 m tall) circulating fluidized bed combustion (CFBC) unit. Operating conditions were chosen to be typical of those employed in large-scale CFBC power boilers. Recycling of fine particles captured by the secondary cyclone was found to be of considerable importance in increasing sulphur capture, enhancing combustion efficiency and reducing the amount of calcium sulphide in the solids residues. NOx emissions increased as the Ca:S ratio increased. Local gas concentrations inside the reactor were strongly influenced by the core-annulus solids distribution patterns which characterize circulating fluidized beds.  相似文献   

7.
Pyrolysis and steam gasification of nickel-loaded Yallourn coal were carried out in a fluidized bed reactor at ambient pressure. The pyrolysis mode was influenced by the addition of nickel catalyst. The yield of total volatile matter decreased whereas the gas yield markedly increased, when compared with uncatalysed pyrolysis. This is considered to result from tar decomposing on the catalyst and being converted to gases and deposited carbon. For the catalysed steam gasification, ≈ 80 wt% of coal conversion was achieved at 873 K and the gas yield was twelve times as much as that for the uncatalysed reaction. The homogeneous equilibrium in the gas phase controlled the composition of the product gas. The product gas contained little tarry material and a negligible amount of hydrogen sulphide. Nickel was efficiently recovered from the residue by an ammonia-leaching method.  相似文献   

8.
A coal gasification mathematical model that can predict temperature, converted fraction and particle size distribution for solids have been developed for a high pressure fluidized bed. For gases in both emulsion and bubble phase, it can predict temperature profiles, gas composition, velocities and other fluid-dynamic parameters. In the feed zone, it could be considered a Gaussian distribution or any other distribution for the solid particle size. Experimental data from literature have been used to validate the model. Finally, the model can be used to optimize the gasification process changing several parameters, such as excess of air, particle size distribution, coal type and reactor geometry.  相似文献   

9.
The main goal of the study presented in the paper was an experimental comparison of the underground lignite and hard coal seams air gasification simulated in the ex situ reactor. In the study lignite and hard coal were gasified with oxygen, air and oxygen enriched air as gasification agents in the 50- and 30-h experiments, respectively, with an intrinsic coal and strata moisture content as a steam source. Application of air as a sole gasification agent was problematic for a resulting rapid decrease in temperatures, deterioration of gas quality and, finally, cessation of gasification reactions. Use of oxygen/air mixture of an optimum ratio led to valuable gas production. In lignite seam gasification with oxygen/air (of 4:2 volume ratio) the average H2 and CO contents in product gas were 23.1 vol.% and 6.3 vol.%, respectively, and the calorific value was 4.18 MJ/m3, whereas in hard coal gasification with the oxygen/air ratio (of 2:3 volume ratio) the average H2 and CO contents in produced gas were 18.7 vol.% and 17.3 vol.%, respectively, and product gas calorific value equaled 5.74 MJ/m3.  相似文献   

10.
Steam gasification of a Victorian brown coal was performed in an atmospheric bubbling fluidized-bed reactor with continuous feeding of the coal. The gasification converted no more than 28, 51 and 71% of the nascent char (on a carbon basis) at 1120, 1173 and 1223 K, respectively. The char recovered from the fluidized bed was, nonetheless, gasified toward complete conversion when exposed to steam in another reactor, in which volatiles from the pyrolysis were absent while interaction between the char and products from the gasification was minimized. Atmosphere created in the fluidized bed thus prevented the char gasification from taking place beyond upper-limit conversion. In the absence of volatiles, nascent char underwent gasification catalyzed by inherent metallic species and non-catalytic gasification in parallel. The non-catalytic gasification was greatly decelerated by the presence of H2 in the gas phase due to its dissociative chemisorption onto free carbon sites forming H-laden carbon. H2 was, however, not a so strong inhibitor as to terminate the gasification. It was rather suggested that much more H-laden carbon was formed through dissociative chemisorption of volatiles and/or chemisorption of hydrogen radical from thermal cracking of volatiles in the gas-phase, which resulted in prevention of the non-catalytic gasification. It seemed that the char was converted in the fluidized-bed mainly by the catalytic gasification, while the conversion was limited due to deactivation of metallic species within the char matrix and their release from the char.  相似文献   

11.
刘林爱  沈果 《山西化工》2012,32(3):60-62
灰熔聚循环流化床粉煤气化技术是我国具有自主知识产权的新型煤气化技术。介绍了该技术的特点、工艺流程,总结了在应用中出现的问题及一些整改措施。  相似文献   

12.
A vertical three-stage fluidized bed pilot plant, with downcomers, was designed and built in order to study the continuous process of the production of activated carbons from a high-volatile bituminous coal from the Puertollano basin (Spain), by steam activation. The pilot plant can operate with a production of up to 40 kg per day. Very good activated carbons were produced at the selected operating conditions. The effect of the following operating conditions on the reactivity and adsorption characteristics of the activated carbons was analyzed: (1) carbonization conditions (one- and two-step activation), (2) activation temperature (800–850 °C), and (3) steam gas velocity (1.5–3 times the minimum fluidization velocity). Carbonization conditions considerably affect the reactivity of the chars obtained; the faster the carbonization process, the higher the reactivity. Nevertheless, the effect of this variable on the development of porosity is not very relevant, and consequently the direct activation process is an attractive alternative to the two-step (carbonization and activation) process. On the other hand, both temperature and steam flow rate (affecting the reaction rate) have a marked effect on the development of porosity.  相似文献   

13.
具有黏结性(黏结性指数10~30)并高灰的劣质煤,如洗中煤难于适应于现有气化技术,但焦化等行业对这些煤的气化高价值利用具有极大的需求。中国科学院过程工程研究所提出了黏结性煤射流预氧化流化床气化技术,采用含氧气体向流化床气化炉稀相区喷射供料,有效破除煤的黏结性,同时强化气固接触和气化反应,实现对黏结性劣质煤的高效转化。采用小型射流预氧化流化床反应器,研究了黏结性指数为20的一种煤通过射流预氧化的破黏与实现流化的效果。分别考察了射流气过量空气系数(ER)和氧浓度(CO2)、加热炉设定温度(T)对预氧化破黏及煤颗粒流化的影响效果,分析了反应器内射流区的温度分布与生成气组成随时间的变化规律,并对预氧化后的半焦进行了电镜观测和气化反应活性测试及傅里叶红外分析。结果表明,在流化床中通过射流预氧化有效破黏、实现黏结性煤颗粒流化的工艺条件为:T > 950℃,CO2=21%,ER > 0.1。在有效破黏的条件下射流区内的温度变化平稳,生成气中H2与CO含量较低,波动较小,而结焦条件下射流区内温度逐渐下降,生成气中H2与CO含量增加。经历结焦的半焦表面生成了黏结性物质,而经过预氧化成功破黏后的半焦其表面大部分官能团消失。  相似文献   

14.
为了考察循环流化床煤燃烧/热解双反应器系统的稳定性,在冷态实验装置上以电厂锅炉灰为实验物料,其中提升管的内径为100 mm,高为6.7 m,与热解室相连立管的内径为44 mm,高3 m,热解室的截面积为200 mm×200 mm,高770 mm。分别考察了影响系统稳定运行的主要因素,并对系统中存在的几对平衡关系进行了分析。结果表明,旋风料腿内的固体料位高度、热解室内的料位高度以及热解室内的压力等是影响系统稳定运行的关键因素,尤其是热解室内压力的增加有可能使立管内料封破坏,最终导致系统瘫痪。而提升管与热解室立管之间压力的平衡以及提升管与旋风分离器料腿之间压力的平衡等在操作过程中必须保持稳定,否则也会发生窜气、架料、旋风分离器效率下降等现象,影响系统稳定运行。  相似文献   

15.
A bed of particulate solids supported by an upward current of gas can be stirred at moderate power input per unit volume using thin horizontal rods mounted on a vertical shaft. The bed is fluidized, but bubbles are suppressed below a critical value of the fluidizing velocity. Stirring increases bed bulk density and reduces the minimum fluidizing velocity. Segregation in a stirred fluidized bed is enhanced with both flotsam and jetsam tracer particles, but the rate of segregation is reduced with flotsam tracers. The stirred fluidized bed may be useful as a device for dry separation of solids.  相似文献   

16.
等离子体煤热解与气化工艺的研究进展   总被引:11,自引:1,他引:11  
介绍了煤在热等离子体中转化为小分子化合物的2个重要过程,即等离子体煤热解和气化的基本原理、应用及发展状况。在非氧化性气氛中,煤热解生成的气体产物主要是乙炔、氢气、一氧化碳,此外还有甲烷和乙烯等小分子烃,乙炔的收率与煤种、粉煤粒度、反应器结构、粉煤进料方式、进料速度及操作条件密切相关,等离子体中氢的存在有利于乙炔的产生;在氧化性气氛中,煤气化产物主要是一氧化碳和氢气,煤中碳的转化率达95%,合成气体积分数约85%,二氧化碳体积分数低于5%。指出等离子体应用于煤转化过程是煤洁净利用的有效方式,具有潜在的工业化应用前景。  相似文献   

17.
Devolatilization and combustion of large particles of Eastern Canadian coals (Evans and Minto), 5-50 mm dia., were studied in a bench-scale atmospheric fluidized bed reactor at 1023-1173 K with 0.5 mm sand particles as the bed material. The devolatilization time, mass loss history, changes in proximate volatiles content and C/H mass ratio, and temperature history at the centre of the particle during devolatilization were determined. The mass loss during devolatilization is correlated with the proximate volatiles content of the parent coal. The devolatilization time is correlated with the initial particle diameter by a power-law relation with an exponent of 1.54-1.64. The results show insignificant effect of superficial velocity on devolatilization.  相似文献   

18.
Australian bituminous coal (Hoskisson) was gasified with oxygen and steam in a 0.4m diameter spouted bed reactor at atmospheric pressure and temperatures of 1050–1170 °C to produce medium calorific value gas. High-ash agglomerates fell through the throat of the spouted bed under restricted gasification conditions, with no simultaneous loss of coal. The effects of temperature, steam-oxygen ratio, coal feed rate and coal size on carbon conversion, production of ash agglomerates, gas composition and decompsition of steam were established.  相似文献   

19.
The Tomlinson recovery boiler has been the mainstay of the kraft pulping industry for over fifty years. It is clear, however, that the main drawbacks to this process are the large capital costs of new plant and the smelt-water explosion hazard. This paper examines some of the fundamental scientific information which supports the concept of fluid bed gasification as an alternative to the Tomlinson boiler. It is shown that a knowledge of thermodynamics is useful but insufficient to completely understand the behaviour of the inorganic sulfur species during pyrolysis and gasification of kraft black liquor. Recent key experimental investigations at McGill have demonstrated that solid state reduction of sodium sulfate to sodium sulfide is feasible.  相似文献   

20.
在冷态模拟实验和煤热解动力学计算的基础上,对粉煤气体热载体快速热解提升管反应器的高度进行了计算。利用高速摄像粒子测速法结合互相关算法研究了不同气体流量和不同颗粒粒径时固体颗粒在热解提升管中的运动速度,通过求解神府煤热解动力学方程,得到了不同粒径神府煤颗粒热解挥发分析出的时间,从而确定了快速热解提升管反应器的高度。研究结果表明:当气体流量在850 m3/h,粉煤的粒径主要集中在0.7—3.0 mm时,提升管的高度应选择在10.0 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号