首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high voltage electron microscope, equipped with scanning transmission (STEM) attachment, electron beam induced conductivity (EBIC) facilities, and electron energy loss spectrometer (ELS), has been used to investigate semiconductor devices. The capability of STEM to produce, simultaneously or sequentially, conductive and transmission images of the same specimen region, which can also be ELS analysed, is exploited in order to establish direct and unambiguous correlations between EBIC and STEM images of defective regions (dislocations and microplasma sites) in silicon devices. The results obtained are discussed in terms of correlations, resolution, contrast, and radiation damage; in addition, a comparison is made between this method and the other correlation methods based on EBIC/SEM (scanning electron microscope) and TEM (transmission electron microscope).  相似文献   

2.
Electron beam-induced current (EBIC) and cathodoluminescence (CL) are widely used methods to obtain information about recombination properties of semiconducting materials and their defects on a micrometer length scale. In this article a computerized SEM (scanning electron microscope) setup is described, which enables us to perform simultaneous measurements of several signals and automatic temperature-dependent measurements. As examples for the performance of this system we present results obtained by simultaneous EBIC/CL experiments, allowing a reconstruction of the defect geometry. In a second example, the temperature dependence of the EBIC contrast is analyzed, introducing the method of EBIC spectroscopy.  相似文献   

3.
Although electron beam-induced current (EBIC) technique was invented in the seventies, it is still a powerful technique for failure analysis and reliability investigations of modern materials and devices. Time-resolved and stroboscopic microanalyses using sampling Fourier components decomposed by modulated charge carrier excitation are introduced. Quantitative determination of electric field strengths within dynamically operated devices in the scanning electron microscope (SEM) will be demonstrated. This technique allows investigations of diffusion and drift processes and of variations of electric field distributions inside active devices.  相似文献   

4.
Charge collection microscopy, usually known by the acronym EBIC (Electron Beam Induced Current) imaging, is a powerful technique for the observation and characterization of semiconductor materials and devices in the scanning electron microscope. Quantitative interpretation of EBIC images is often difficult because of the problem of accurately representing the electron-beam interaction with the semiconductor. This paper uses a Monte Carlo technique to simulate the electron-beam interaction, and it is shown that this permits simple analytical point-source solutions to be generalized to fully represent the experimental situation of an extended, non-uniform, carrier source. The model is demonstrated by application to EBIC imaging in the Schottky barrier geometry.  相似文献   

5.
The electrical properties of multilayer structures obtained by direct bonding of silicon wafers and epitaxial growth have been investigated. The measurements were made by scanning electron microscopy (SEM) in either secondary electron or electron beam-induced current (EBIC) regime, using cross sections of the structures with a p-n junction formed in the subsurface region of the active layer. The measurements of defect recombination activity were made using Schottky diodes formed on the active layer surfaces. Parasitic p-n junctions in some samples under a small direct voltage have been observed and the reason for the appearance of such parasitic junctions has been established. Two types of defects with different distribution densities and amplitudes of EBIC contrast have been detected.  相似文献   

6.
Besides the characterization of the geometrical structure of defects in semiconductors by TEM the estimation of their electrical activity is of importance. SEM(EBIC) and SDLTS (scanning deep level transient spectroscopy) are especially suitable for this purpose; they allow the inspection of electronic properties with a spatial resolution in the micron-range. On the one hand, SEM(EBIC) yields information on the recombination efficiency of defects in the crystal volume adjacent to a pn junction or a Schottky barrier; on the other hand, SDLTS enables the detection to be carried out of the distribution and the energetic levels of deep level defects lying in the space charge region. Accordingly, the combined application of these techniques is very promising for investigating physical processes implying an inhomogeneous incorporation of deep level defects in semiconductor crystals. In comparison to the widely used SEM(EBIC) technique SDLTS has only rarely been applied, a fact that is due to the high detection sensitivity necessary for measuring capacity transients. The application of a highly sensitive (10—6 pF) micro-computer-controlled SDLTS system in combination with a conventional EBIC system allows a reliable inspection of semiconductor materials and devices, based on A3B5 compounds and on silicon. A typical application of the above technique is the investigation of the impurity distribution around extended crystal defects, like dislocations and precipitates, to study their gettering activity.  相似文献   

7.
The electron beam induced current (EBIC) mode of the scanning electron microscope (SEM) has been used to characterize double heterostructure laser materials and devices in GaAs/Ga1–xAlxAs. Scanning the electron probe across the cleaved face of the laser structure shows that displacement of the p-n junction with respect to the heterojunctions is not uncommon with displacements ~ 1 μm occurring. Concurrent measurement of the minority carrier diffusion length gives very short lengths of 0·3–0·4 μm, differing from those in much thicker layers. Scanning the electron probe in the contact plane indicates clearly that long-lived lasers exhibit marked heterogeneity during degradation. Considerable complexity and variation is recorded depending upon the fabrication details and degradation conditions adopted.  相似文献   

8.
Nakayama Y 《Ultramicroscopy》2002,91(1-4):49-56
We have developed well-controlled processes for the growth and manipulation of carbon nanotubes. The relatively thin multiwalled nanotubes were prepared with high purity by arc discharge with a high gas temperature. In the manipulation of nanotubes, the first crucial process is to prepare a nanotube array, so-called nanotube cartridge. We have found the alternated current electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge of a disposal razor. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope. Using this method, we have developed nanotube probes and nanotube tweezers that operate in a scanning probe microscope (SPM). The nanotube probes have been applied for observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have been demonstrated for their motion in scanning electron microscope and operated to carry a nanomaterial in a SPM.  相似文献   

9.
The combination of scanning electron microscopy (SEM) and scanning optical microscopy (SOM), including a computer-controlled signal detection system, is promising in the study of a variety of materials, especially such alkaline-earth oxides with a rock salt structure, such as MgO. Among the SEM modes of this technique used to investigate deformed zones in indented MgO single crystals are: secondary electrons (SE), cathodoluminescence (CL) (total, pointal, color), electron beam-induced current (EBIC), electron beam-induced voltage (EBIV), as well as both polarized and transmitted light modes in SOM. The present experiments were designed to clarify the correlation between the optical, luminescent, electrical, and plastic properties of deformed MgO. An attempt has been made to explain the results in terms of dislocations created during deformation.  相似文献   

10.
Electron Beam-Induced Current (EBIC) measurements were used to produce 2D maps for investigating the homogeneity of solar cells. These maps are acquired by scanning the electron beam of a scanning electron microscope over a small area and using a programmable sample stage to move the solar cell under the scan area. The electron beam generates electron-hole pairs in the solar cell much like light does in normal solar cell operation. Solution-processed solar cells where the active layer consisted of purely inorganic or purely organic materials were measured. Since the electron beam irreversibly damages organic material, it was important to ensure that the measurements were made before the materials were altered.  相似文献   

11.
本文论述了用扫描电子显微镜研究GaP LPE半导体材料,二次电子像用于分析样品的表面形貌,电子束感生电流像(EBIC)用于显示p-n结的位置,定量EBIC用以确定少子扩散长度和表面复合速度等重要参量。  相似文献   

12.
Holt DB 《Scanning》2000,22(1):28-51
When no charge collecting p-n junction or Schottky barrier is present in the specimen, but two contacts are applied, conductive mode scanning electron microscope (SEM) observations known as remote electron beam-induced current (REBIC) can be made. It was described as "remote" EBIC because the contacts to the specimen can lie at macroscopic distances from the beam impact point. In recent years, REBIC has been found to be useful not only for studies of grain boundaries in semiconducting silicon and germanium, but also in semi-insulating materials such as the wider bandgap II-VI compounds and electroceramic materials like varistor ZnO and positive temperature coefficient resistor (PTCR) BaTiO3. The principles of this method are outlined. Accounts are given of the five forms of charge collection and resistive contrast that appear at grain boundaries (GBs) in REBIC micrographs. These are (1) terraced contrast due to high resistivity boundary layers, (2) peak and trough (PAT) contrast due to charge on the boundary, (3) reversible contrast seen only under external voltage bias due to the beta-conductive effect in a low conductivity boundary layer, (4) dark contrast due to enhanced recombination, and (5) bright contrast apparently due to reduced recombination. For comparison, the results of the extensive EBIC studies of GBs in Si and Ge are first outlined and then the results of recent REBIC grain boundary studies in both semiconducting and semi-insulating materials are reviewed.  相似文献   

13.
Oho E  Sugawara T  Suzuki K 《Scanning》2005,27(4):170-175
An improved scanning method for the scanning electron microscope (SEM) is proposed. Here, quincuncial scanning (sampling) instead of a conventional (raster) scanning is used. This scanning method is very effective for quality improvement of an SEM image obtained under undersampling conditions (rough sampling). The present study focuses on characteristics of the human visual system, specifically the low response of eyes in diagonal directions. When using this method coupled with a high-precision interpolation, the number of pixels necessarily doubles. It is not surprising that it is advantageous for printing. A more important advantage is the fact that SEM images can be acquired with a shorter recording time. Hence, this type of scanning will be helpful for quick and frequent recordings in a "snapshot" mode, which up to now has not been achieved successfully by SEM.  相似文献   

14.
Y. G. Li  P. Zhang  Z. J. Ding 《Scanning》2013,35(2):127-139
In semiconductor industry, strict critical dimension control by using a critical dimension scanning electron microscope (CD‐SEM) is an extremely urgent task in near‐term years. A Monte Carlo simulation model for study of CD‐SEM image has been established, which is based on using Mott's cross section for electron elastic scattering and the full Penn dielectric function formalism for electron inelastic scattering and the associated secondary electron (SE) production. In this work, a systematic calculation of CD‐SEM line‐scan profiles and 2D images of trapezoidal Si lines has been performed by taking into account different experimental factors including electron beam condition (primary energy, probe size), line geometry (width, height, foot/corner rounding, sidewall angle, and roughness), material properties, and SE signal detection. The influences of these factors to the critical dimension metrology are investigated, leading to build a future comprehensive model‐based library. SCANNING 35: 127‐139, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
扫描探针显微镜是近十几年来在表面特征表面形貌观测方面最重大的进展之一,是纳米测量学的基本工具,本文叙述了扫描探针显微镜的工作原理、检测模式及在观察检测纳米级的粗糙度、微小尺寸、表面形貌方面的特点和方法,比较了原子力显微镜、常规的表面轮廓仪、干涉显微镜、扫描电子显微镜在表面特性、表面形貌观测方面的性能,着重介绍了扫描探针显微镜在这方面的应用和存在的问题。  相似文献   

16.
A scanning electron microscope of ultra-high-vacuum (UHV-SEM) with a field emission gun (FEG) is operated at the primary electron energies of from 100 eV to 3 keV. The instrument can form the images that contain information on surface chemical composition, chemical bonding state (electronic structure), and surface crystal structure in a microscopic resolution of several hundred angstroms (Å) using the techniques of scanning Auger electron microscope, scanning electron energy loss microscope, and scanning low-energy electron diffraction (LEED) microscope. A scanning tunneling microscope (STM) also has been combined with the SEM in order to obtain the atomic resolution for the solid surface. The instrumentation and examples of their applications are presented both for scanning LEED microscopy and STM.  相似文献   

17.
O. C. Wells 《Scanning》1988,10(2):73-81
To achieve the highest resolution in the scanning electron microscope (SEM) or in the scanning transmission electron microscope (STEM), the sample must be mounted in the high-field region of a condenser-objective lens. A secondary electron (SE) image can then be obtained using a collector before the lens. It is also possible to obtain a scanning reflection image by tilting the specimen so that the second half of the condenser-objective lens field deflects the forward-scattered electrons onto the transmission detector beyond the specimen. Experiments were made with an unmodified commercial SEM fitted with a condenser-objective in the upper stage and with a transmission detector, and it was found that the scanning reflection image from a solid sample can provide additional useful information when used in conjunction with the SE image.  相似文献   

18.
Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.  相似文献   

19.
开放式多功能扫描探针显微镜系统   总被引:2,自引:0,他引:2  
开放式多功能扫描探针显微镜、集成扫描隧道显微镜、原子力显微镜、横向力显微镜和静电力显微镜.具有接触、半接触和非接触工作模式,可进行作用力、电流、电位、光能量等参数的高度局域综合测量,具有极高的开放性和可扩展性,支持用户进行二次开发。  相似文献   

20.
D. McMullan 《Scanning》1995,17(3):175-185
This article gives an account of the origins of the scanning electron microscope (SEM) and traces its development up to 1965 when the first SEM was marketed by the Cambridge Instrument Company. The survey concentrates on the SEM, as distinct from the microanalytic electron probe instruments that were also being developed during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号