首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZrB2–LaB6 powder was obtained by reactive synthesis using ZrO2, La2O3, B4C, and carbon powders. Then ZrB2–20 vol% SiC–10 vol% LaB6 (ZSL) ceramics were prepared from commercially available SiC and the synthesized ZrB2–LaB6 powder via hot pressing at 2000°C. The phase composition, microstructure, and mechanical properties were characterized. Results showed that both LaB6 and SiC were uniformly distributed in the ZrB2 matrix. The hardness and bending strength of ZSL were 17.06±0.52 GPa and 505.8±17.9 MPa, respectively. Fracture toughness was 5.7±0.39 MPa·m1/2, which is significantly higher than that reported for ZrB2–20 vol% SiC ceramics, due to enhanced crack deflection and crack bridging near SiC particles.  相似文献   

2.
Thermophysical properties were investigated for zirconium diboride (ZrB2) and ZrB2–30 vol% silicon carbide (SiC) ceramics. Thermal conductivities were calculated from measured thermal diffusivities, heat capacities, and densities. The thermal conductivity of ZrB2 increased from 56 W (m K)−1 at room temperature to 67 W (m K)−1 at 1675 K, whereas the thermal conductivity of ZrB2–SiC decreased from 62 to 56 W (m K)−1 over the same temperature range. Electron and phonon contributions to thermal conductivity were determined using electrical resistivity measurements and were used, along with grain size models, to explain the observed trends. The results are compared with previously reported thermal conductivities for ZrB2 and ZrB2–SiC.  相似文献   

3.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

4.
Microstructure of the hot-pressed ZrB2 with MoSi2 additive was investigated by transmission electron microscopy (TEM). The effect of MoSi2 addition on the microstructure of the ceramic was assessed. For the pure ZrB2, the microstructure consisted of the equiaxed ZrB2 grains and a few elongated ZrB2 grains. For the ZrB2 with MoSi2 additive, the microstructure consisted almost entirely of equiaxed ZrB2 grains. A few dislocations were present in the ZrB2 grains. In addition, high-resolution TEM observations showed that the intergranular amorphous phase was absent at two ZrB2 grain boundaries in the ZrB2 with MoSi2 additive.  相似文献   

5.
A solid electrolyte electrochemical cell of the type Pt|Ni:NiO a =1∥ZrO2+7.5% CaO∥Ni:NiO a <1+glass|Pt was used to measure the activities of NiO in sodium disilicate glass from 750° to 1100°C. The data indicate a solubility varying from 11 mol% (5.0 wt%) at 800° to 20 mol% (9.3 wt%) at 1100°C. From the variation in NiO activity, the activity of sodium disilicate in glass solution was estimated; from these combined data partial molar free energies and entropies of solution of NiO and Na2Si2O5 and free energies and entropies of mixing were calculated. A partial phase diagram for the system NiO-Na2Si2O5 proposed from solubility data indicates a eutectic at ∼12 mol% (5.3 wt%) NiO at 830°C.  相似文献   

6.
The subsolidus phase relationships in the system Si,Al,Y/N,O were determined. Thirty-nine compatibility tetrahedra were established in the region Si3N4─AIN─Al2O3─Y2O3. The subsolidus phase relationships in the region Si3N4─AIN─YN─Y2O3 have also been studied. Only one compound, 2YN:Si3N4, was confirmed in the binary system Si3N4─YN. The solubility limits of the α'─SiAION on the Si3N4─YN:3AIN join were determined to range from m = 1.3 to m = 2.4 in the formula Y m /3Si12- m Al m N16. No quinary compound was found. Seven compatibility tetrahedra were established in the region Si3N4─AIN─YN─Y2O3.  相似文献   

7.
Interfaces in LaB6–ZrB2 composites directionally solidified by a zone melting process were characterized by transmission electron microscopy (TEM). The nominal crystallographic orientation relationship between the two phases corresponded to a high-symmetry near-coincidence site lattice (NCSL). The small mistilt (2°–5°) from the high-symmetry orientation relationship was shown to result in an increased volume density of coincident sites. Furthermore, the dominant interface facet planes were predicted by the NCSL model. The configurations of interfacial misfit dislocations were analyzed by high-resolution TEM and showed a good agreement with predictions based on the displacement shift complete lattice and secondary original lattice (O2-lattice) models. These analyses suggested that interfaces were relaxed to relatively low-energy configurations.  相似文献   

8.
Ta0.33Ti0.33Nb0.33C and Ta0.33Ti0.33Nb0.33C x N1− x whiskers were synthesized via a carbothermal vapor-liquid-solid growth mechanism in the temperature range 900°-1450°C in Ar or N2. The optimum temperature was 1250°C. Whiskers were obtained in a yield of 70-90 vol%. The whiskers were 0.5–1 µm in diameter and 10–30 µm in length. The starting materials that produced the highest whisker yield were: TiO2, Ta2O5, Nb2O5, C, Ni, and NaCl. C was added to reduce the oxides, and Ni to catalyze whisker growth. NaCl was used as a source of Cl for vapor-phase transportation of Ta and Nb oxochlorides and Ti chlorides to the catalyst. The catalyst metal was recycled several times during the synthesis and was transported as NiCl2( g ) according to thermodynamic calculations. The rate of formation and the chemical composition of the whiskers depended on the synthesis temperature, the choice of catalyst, and the atmosphere. At low temperatures, the whiskers were enriched in Nb and Ta, whereas the Ti content increased with increased synthesis temperature.  相似文献   

9.
A ZrB2-based composite was fully densified by pressureless sintering at 1850°C with addition of 20 vol% MoSi2. The microstructure was very fine, with mean dimensions of ZrB2 grains around 2.5 μm. The four-point flexural strength in air was in excess of 500 MPa up to 1500°C.  相似文献   

10.
A volatility diagram was calculated for temperatures of 1000, 1800, and 2500 K to understand the oxidation of ZrB2. Applying the diagram, it can be seen that exposure of ZrB2 to air produces ZrO2 (cr) and B2O3 (l) over the temperature range considered. The pressure of the predominant vapor species was predicted to increase from ∼10−6 Pa at 1000 K, to 344 Pa at 1800 K, and to ∼105 Pa at 2500 K. Predictions were consistent with experimental observations that ZrB2 exhibits passive oxidation below 1200 K, but undergoes active oxidation at higher temperatures due to B2O3 (l) evaporation.  相似文献   

11.
The compositional range for glass formation below 1600°C in the Sm2O3─Al2O3─SiO2 system is (9–25)Sm2O3─(10–35)Al2O3─(40–75)SiO2 (mol%). Selected properties of the Sm2O3─Al2O3─SiO2 (SmAS) glasses were evaluated as a function of composition. The density, refractive index, microhardness, and thermal expansion coefficient increased as the Sm2O3 content increased from 9 to 25 mol%, the values exceeding those for fused silica. The dissolution rate in 1 N HCl and in deionized water increased with increasing Sm2O3 content and with increasing temperature to 70°C. The transformation temperature ( T g ) and dilatometric softening temperature ( T d ) of the SmAS glasses exceeded 800° and 850°C, respectively.  相似文献   

12.
Titanium oxide/aluminum oxide films have been deposited using molecular beam epitaxy methods and characterized by reflection high-energy electron diffraction and transmission electron microscopy techniques. Growth on silicon substrates below 973 K resulted in primarily amorphous multilayers. At 1323 K, the deposition of titanium in an oxygen atmosphere on (0001) Al2O3 substrates resulted in films of Ti2O3. These films consisted of small domains, up to 60 nm, slightly misoriented from a [1120] ∥ [1120] orientation relationship. Two variants of Ti2O3 were observed due to multiple positioning during growth. Closing the titanium shutter during growth resulted in an oriented TiO2 film.  相似文献   

13.
This work reported the microstructural evolution and grain growth kinetics of ZrB2–SiC composites containing 10, 20, and 30 vol% SiC during heat treatment at 2000°C. The coarsening of ZrB2 occurred in the three systems, whereas the obvious coarsening for SiC appeared only in the composite with 30 vol% SiC. The kinetics analysis showed the ZrB2 grain growth rate in the ZrB2–30 vol% SiC was 25 times lower than that for ZrB2–10 vol% SiC during heat treatment. Furthermore, the grain growth controlling mechanisms of ZrB2 and SiC were discussed. In addition, it was found that the heat treatment had little effect on Vickers hardness and fracture toughness of ZrB2–SiC.  相似文献   

14.
Solid-state compatibility and melting relationships in the subsystem Al2O3—MgAl2O4—CaAl4O7 were studied by firing and quenching selected samples located in the isopletal section (CaO·MgO)—Al2O3. The samples then were examined using X-ray diffractomtery, optical microscopy, and scanning and transmission electron microscopies with wavelength- and energy-dispersive spectroscopies, respectively. The temperature, composition, and character of the ternary invariant points of the subsystem were established. The existence of two new ternary phases (Ca2Mg2Al28O46 and CaMg2Al16O27) was confirmed, and the composition, temperature, and peritectic character of their melting points were determined. The isothermal sections at 1650°, 1750°, and 1840°C of this subsystem were plotted, and the solid-solution ranges of CaAl4O7, CaAl12O19, MgAl2O4, Ca2Mg2Al28O46, and CaMg2Al16O27 were determined at various temperatures. The experimental data obtained in this investigation, those reported in Part I of this work, and those found in the literature were used to establish the projection of the liquidus surface of the ternary system Al2O3—MgO—CaO.  相似文献   

15.
The thermal and electrical properties of MoSi2 and/or SiC-containing ZrB2-based composites and the effects of MoSi2 and SiC contents were examined in hot-pressed ZrB2–MoSi2–SiC composites. The thermal conductivity and electrical conductivity of the ZrB2–MoSi2–SiC composites were measured at room temperature by a nanoflash technique and a current–voltage method, respectively. The results indicate that the thermal and electrical conductivities of ZrB2–MoSi2–SiC composites are dependent on the amount of MoSi2 and SiC. The thermal conductivities observed for all of the compositions were more than 75 W·(m·K)−1. A maximum conductivity of 97.55 W·(m·K)−1 was measured for the 20 vol% MoSi2-30 vol% SiC-containing ZrB2 composite. On the other hand, the electrical conductivities observed for all of the compositions were in the range from 4.07 × 10–8.11 × 10 Ω−1·cm−1.  相似文献   

16.
When sintered 95Al2O3-5Fe2O3 (wt%) specimens constituting corundum grains and iron aluminate spinel precipitates were annealed under high oxygen partial pressure (Po2) where only a corundum phase is stable, fast dissolution of particulate spinel precipitates occurred, together with the migration of corundum grain boundaries. Behind the migrating boundaries, a corundum solid solution enriched with Fe2O3 formed. Discontinuous dissolution (DD) of particulate spinel precipitates thus occurred by Po2 increase. In contrast, when 95Al2O3-5Fe2O3 specimens constituting only corundum grains were annealed under low Po2 where both corundum and spinel phases are stable, grain boundaries migrated without spinel precipitation, leaving behind a corundum phase depleted of Fe2O3, similar to chemically induced grain-boundary migration (CIGM) observed during solute depletion. The volatilization of Fe2O3 appeared to cause the boundary migration without precipitation. The observed CIGM and DD would suggest various possibilities of microstructure control in other oxide systems through oxygen partial pressure change.  相似文献   

17.
The monoclinic ⇌ tetragonal phase transition in ZrO2 single crystals was studied at temperature by transmission optical microscopy and X-ray diffraction techniques. A series of timelapse photographs illustrated the relations between the events that occur during the transition. The events themselves were recognized by direct observation using a high-temperature microscope stage and by scrutiny of several high-temperature Laue photographs. During heating the monoclinic phase transforms to the tetragonal by the motion of an interface parallel to the (100) m plane; simultaneous twinning also occurs behind the advancing interface. The tetragonal phase is usually twinned on the (1 2) bct or ( 12) bct plane, and the extent of twinning is influenced by the heating rate. Cooling transforms the untwinned tetragonal form into a twinned monoclinic form with the orientation of the monoclinic twins parallel to the trace of the (001) m plane when observations are made in the (100) m plane. Transformation of a twinned tetragonal crystal results in twins on the {110} m and {001} m planes. Orientation relations in the ZrO2 transformation are: (100) m ‖(110) bct , [010] m ‖[001] bct , and by the virtue of twinning, (100) m ‖(110) bct , [001] m ‖[001] bct . During cooling the same topotaxial relations are maintained.  相似文献   

18.
Growth of Sr2Nb2O7 particle size in KCl melts occurs by reaction on insoluble Nb2O5 particles in the melt. Thus, Sr2Nb2O7 size is controlled by the initial size of the reactants. By altering the reactant composition to include larger Nb-rich reactants such as SrNb2O6, 5-30 µm, anisotropic Sr2Nb2O7 particles are formed.  相似文献   

19.
Thermal decomposition of mullite into corundum was investigated using a high-temperature X-ray single-crystal camera equipped with a gas-flame furnace and by scanning electron microscopy and electron probe microanalysis (EPMA). When heated to ∼1750°C, mullite decomposed to corundum by the liberation of the SiO2 component with topotaxial relations of:
  • (1) 

    (310)mull∥(001)cor; [001]mull∥[110]cor

  • (2) 

    (130)mull∥(001)cor; [001]mull∥[110]cor

  • (3) 

    (110)mull∥(001)cor; [001]mull∥[110]cor


Thus, it was considered that, when mullite decomposed into corundum, their oxygen close-packed planes were almost preserved. The SEM photographs showed that the crystals of the developed corundum are prismatic and ∼5 μm wide. The EPMA showed that the phase boundary between mullite and developed corundum is discontinuous.  相似文献   

20.
Crystallochemical changes of (Pb5Ca5)(VO4)6F2 apatite under electron irradiation were examined by transmission electron microscopy. The apatite, a synthetic analog of vanadinite, was moderately stable towards a less intense 300-keV LaB6 source, while it changed rapidly in structure when exposed to the higher flux of a 200-keV field emission gun. The electron beam induced transformation of vanadinite proceeds sequentially by (i) migration and loss of fluorine, (ii) lead volatilization and conversion to 2–5-nm platelets of a glaserite-type structure, and (iii) the reduction of V5+ to V4+ with the removal of lead and calcium oxide that leads to single-crystal CaVO3 perovskite as the ultimate product. The phase transformations are interpreted based on the crystallographic relations among the CaVO3 perovskite, the (Pb5Ca5)(VO4)6F2 apatite and the glaserite-type structures, and compositional changes under electron irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号