首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterized the genomic region corresponding to the human ceruloplasmin cDNA previously reported. Using PCR-direct sequencing methods, we determined precise intron/exon boundaries and intron-exon composition of the gene in the region. The gene region spanned about 50 kb and was composed of 19 exons and 18 introns. The lengths of exons and introns range from 107 to over 267 bp and from 0.44 to 10.0 kb, respectively. The translation initiation codon and the termination codon were located in exons 1 and 19, respectively. The nucleotide sequences of the introns were also determined in the region around the intron/exon boundaries for 24-220 bp. All the sequences around the intron/exon boundaries were consistent with the 5' and 3' consensus sequences for splice junctions of transcribed genes. Putative lariat sequences were identified between -17 and -42 nucleotides from the 3' splice junction for all 18 introns.  相似文献   

2.
Splicing of alternative exon 6 to invariant exons 2, 3, and 4 in acetylcholinesterase (AChE) pre-mRNA results in expression of the prevailing enzyme species in the nervous system and at the neuromuscular junction of skeletal muscle. The structural determinants controlling splice selection are examined in differentiating C2-C12 muscle cells by selective intron deletion from and site-directed mutagenesis in the Ache gene. Transfection of a plasmid lacking two invariant introns (introns II and III) within the open reading frame of the Ache gene, located 5' of the alternative splice region, resulted in alternatively spliced mRNAs encoding enzyme forms not found endogenously in myotubes. Retention of either intron II or III is sufficient to control the tissue-specific pre-mRNA splicing pattern prevalent in situ. Further deletions and branch point mutations revealed that upstream splicing, but not the secondary structure of AChE pre-mRNA, is the determining factor in the splice selection. In addition, deletion of the alternative intron between the splice donor site and alternative acceptor sites resulted in aberrant upstream splicing. Thus, selective splicing of AChE pre-mRNA during myogenesis occurs in an ordered recognition sequence in which the alternative intron influences the fidelity of correct upstream splicing, which, in turn, determines the downstream splice selection of alternative exons.  相似文献   

3.
Group II intron splicing in vivo by first-step hydrolysis   总被引:1,自引:0,他引:1  
Group I, group II and spliceosomal introns splice by two sequential transesterification reactions. For both spliceosomal and group II introns, the first-step reaction occurs by nucleophilic attack on the 5' splice junction by the 2' hydroxyl of an internal adenosine, forming a 2'-5' phosphodiester branch in the intron. The second reaction joins the two exons with a 3'-5' phosphodiester bond and releases intron lariat. In vitro, group II introns can self-splice by an efficient alternative pathway in which the first-step reaction occurs by hydrolysis. The resulting linear splicing intermediate participates in normal second-step reactions, forming spliced exon and linear intron RNAs. Here we show that the group II intron first-step hydrolysis reaction occurs in vivo in place of transesterification in the mitochondria of yeast strains containing branch-site mutations. As expected, the mutations block branching, but surprisingly still allow accurate splicing. This hydrolysis pathway may have been a step in the evolution of splicing mechanisms.  相似文献   

4.
Nramp2 is a gene encoding a transmembrane protein that is important in metal transport, in particular iron. Mutations in nramp2 have been shown to be associated with microcytic anemia in mk/mk mice and defective iron transport in Belgrade rats. Nramp2 contains a classical iron responsive element in the 3' untranslated region that confers iron dependent mRNA stabilization. In this report, we describe a splice variant form of human nramp2 that has the carboxyl terminal 18 amino acids substituted with 25 novel amino acids and has a new 3' untranslated region lacking a classical iron-responsive element. This splice form of nramp2, nramp2 non-IRE, was found to be derived from splicing of an additional exon into the terminal coding exon. The nramp2 gene is comprised of 17 exons and spans more than 36 kb. It contains an additional 5' exon and intron (exon and intron 1) and an additional 3' exon (exon 17) and intron (intron 16) as compared to nramp1, a homologous gene. The additional exons and introns account for much of the difference in length between nramp2 (> 36 kb) and nramp1 (12 kb). The exon-intron borders of nramp2 exons 3-15 are homologous to nramp1 exons 2-14. The nramp2 5' regulatory region contains two CCAAT boxes but lacks a TATA box. The 5' regulatory region of nramp2 also contains five potential metal response elements (MRE's) that are similar to the MRE's found in the metallothionein-IIA gene, three potential SP1 binding sites and a single gamma-interferon regulatory element. Five single nucleotide mutations or polymorphisms were identified within the nramp2 gene. One of these, 1303C-->A, occurs in the coding region of nramp2 and results in an amino acid change from leucine to isolecine. A polymorphism, 1254T/C, also occurs in the coding region of nramp2 but does not cause an amino acid change. The other 3 polymorphisms are within introns (IVS2 + 11A/G, IVS4 + 44C/A, and IVS6 + 538G/Gdel). In addition, a polymorphic microsatellite TATATCTATATATC (TA)6-7 (CA)10-11 CCCCCTATA (TATC)3 (TCTG)5 TCCG (TCTA)6 was identified in intron 3. Analysis of cDNA derived by direct amplification of reversed transcribed RNA or cDNA clones isolated from a library provide evidence of skipping of exons 10 and 12 of nramp2. Deletion of either of these exons would result in a sequence that remains in frame yet would generate a protein that would lack transmembrane spanning region 7 or 8 respectively. The deletion of a single transmembrane domain would have severe topological consequences. The coding region of the nramp2 gene of hemochromatosis patients with or without mutations in the hemochromatosis gene, HFE, were examined and found to be normal. One hemochromatosis patient, with a normal HFE genotype, was heterozygous for the 1303C-->A mutation. Furthermore, in an examination of hemochromatosis patients with mutant HFE and normal HFE genes, we did not observe a linkage disequilibrium of either group with a particular nramp2 haplotype. These data suggest that mutations in nramp2 are not commonly associated with hemochromatosis.  相似文献   

5.
The involvement of exon sequences in splice site selection was studied in vivo in HeLa cells transfected with a series of model three exon-two intron pre-mRNAs which differed only in the sequence of their internal exons. When the majority of the human globin-derived 175-nucleotide internal exon (DUP175) was replaced with a sequence from the yeast URA3 gene (DUP184), the splicing pathway changed from complete inclusion of the internal exon in DUP175 to its predominant skipping in the DUP184 construct. Skipping of the exon was reversed by increasing the strength of its flanking splicing elements indicating that exon sequences exert their effect only in the presence of relatively weak splicing signals. A series of block mutations in the internal exon of DUP184 showed that a stretch of 6 cytidine nucleotides increased the inclusion of the DUP184 internal exon about 7-fold. Mutations generating purine-rich sequences (AAG and GAAG) at the 3' end of the exon led to complete exon inclusion while stepwise insertion of sequences from the internal exon of DUP175 into the DUP184 background increased exon inclusion 5-fold. Combination of the stretch of cytidines with sequences derived from DUP175 exon resulted in complete exon inclusion indicating that diverse signals within exons may cooperate with each other in affecting splice site selection.  相似文献   

6.
Ehlers-Danlos syndrome (EDS) type IV results from mutations in the COL3A1 gene, which encodes the constituent chains of type III procollagen. We have identified, in 33 unrelated individuals or families with EDS type IV, mutations that affect splicing, of which 30 are point mutations at splice junctions and 3 are small deletions that remove splice-junction sequences and partial exon sequences. Except for one point mutation at a donor site, which leads to partial intron inclusion, and a single base-pair substitution at an acceptor site, which gives rise to inclusion of the complete upstream intron into the mature mRNA, all mutations result in deletion of a single exon as the only splice alteration. Of the exon-skipping mutations that are due to single base substitutions, which we have identified in 28 separate individuals, only two affect the splice-acceptor site. The underrepresentation of splice acceptor-site mutations suggests that the favored consequence of 3' mutations is the use of an alternative acceptor site that creates a null allele with a premature-termination codon. The phenotypes of those mutations may differ, with respect to either their severity or their symptomatic range, from the usual presentation of EDS type IV and thus have been excluded from analysis.  相似文献   

7.
A minor class of metazoan introns has well-conserved splice sites with 5'-AU-AC-3' boundaries, compared to the 5'-GU-AG-3' boundaries and degenerate splice sites of conventional introns. Splicing of the AT-AC intron 2 of a sodium channel (SCN4A) precursor messenger RNA in vitro did not require inhibition of conventional splicing and required adenosine triphosphate, magnesium, and U12 small nuclear RNA (snRNA). When exon 3 was followed by the 5' splice site from the downstream conventional intron, splicing of intron 2 was greatly stimulated. This effect was U1 snRNA-dependent, unlike the basal AT-AC splicing reaction. Therefore, U1-mediated exon definition interactions can coordinate the activities of major and minor spliceosomes.  相似文献   

8.
9.
In the gene of the neural cell adhesion molecule, the 5' splice site of the alternate exon 18 plays an important role in establishing regulated splicing profiles. To understand how the 5' splice site of exon 18 contributes to splicing regulation, we have investigated the interaction of the U2AF65 splicing factor to pre-mRNAs that contained portions of the constitutive exon 17 or the alternate exon 18 fused to exon 19 and separated by a shortened intron. Despite sharing an identical 3' splice site, only the pre-mRNA that contained a portion of exon 17 and its associated 5' splice site displayed efficient U2AF65 cross-linking. Strikingly, a G-->U mutation at position +6 of the intron, converting the 5' splice site of exon 18 into that of exon 17, stimulated U2AF65 crosslinking. The improved cross-linking efficiency of U2AF65 to a pre-mRNA carrying the 5' splice site of exon 17 required the integrity of the 5' end of U1 but not of U2 small nuclear RNA. Our results indicate that neural cell adhesion molecule 5' splice site sequences influence U2AF65 binding through a U1 small nuclear ribonucleoprotein/U2AF interaction that occurs at the commitment stage of spliceosome assembly, before stable binding of the U2 small nuclear ribonucleoprotein. Thus, the 5' splice sites of exons 17 and 18 differentially affect U2AF65 binding to the 3' splice site of exon 19. Factors that modulate U1 small nuclear ribonucleoprotein binding to these 5' splice sites may play a critical role in regulating exon 18 skipping.  相似文献   

10.
11.
To investigate which specific kinds of base changes are induced by psoralen adducts in the genomic DNA of diploid human fibroblasts, cells were exposed to 8-methoxypsoralen (8-MOP) at 2-12 microM followed by one dose of UVA (365 nm) irradiation (PUVA-I treatment) or two doses of UVA (PUVA-II treatment). While PUVA-I treatment produced little effect on the induction of cytotoxicity, PUVA-II treatment significantly reduced the fibroblasts' colony-forming ability and resulted in about 10-fold increases in mutation frequency at the D0 dose. Mutations in the hypoxanthine (guanine) phosphoribosyltransferase (hprt) gene of 36 independent PUVA-II mutants were characterized by direct sequencing of cDNA amplified by the polymerase chain reaction (PCR). Seventeen mutants contained single base substitutions and the other 19 mutants either lacked one or more exons, or had deleted or gained nucleotides in the exon boundaries in their cDNA. The intron--exon boundaries of 10 of these 19 putative splicing mutants were further characterized by direct sequencing of the PCR-amplified hprt gene. The results showed that nine contained single base substitutions at the consensus splicing donor and acceptor sites. One splicing mutant possessed two base substitutions located at exon 8, whereas its splicing sites were intact. Most of the base substitutions occurred at T-A base pairs (24/29). The majority of T.A changes occurred at thymine of 5'TA and 5'ATA on the non-transcribed strand. Four of the five G.C base substitutions were located at guanines of 5'TG sites adjacent 3' to AT or TA sequences. In addition, the occurrence of a specific type of mutation was highly correlated to the 5' flanking bases of TA sites. The mutagenesis of 13 of the 16 mutational events at 5'TA sites on the non-transcribed strand can be explained by the preferential incisions of the photoadducts on the transcribed strand followed by misalignment--realignment during translesion repair synthesis of the bulky lesions on the non-transcribed strand.  相似文献   

12.
Mutations in the X-linked hypoxanthine-guanine phosphoribosyl transferase gene (HPRT) result in deficiencies of HPRT enzyme activity, which may cause either a severe form of gout or Lesch-Nyhan syndrome depending on the residual enzyme activity. Mutations leading to these diseases are heterogeneous and include DNA base substitutions, DNA deletions, DNA base insertions and errors in RNA splicing. Identification of mutations has been performed at the RNA and DNA level. Sequencing genomic DNA of the HPRT gene offers the possibility of direct diagnostic analysis independent on the expression of the mature HPRT mRNA. We describe a Dutch and a Spanish family, in which the Lesch-Nyhan syndrome and a severe partial HPRT-deficient phenotype, respectively, were diagnosed. Direct sequencing of the exons coding for the HPRT gene was performed in both families. Two new exon 3 mutations have been identified. At position 16676, the normally present G was substituted by an A in the Dutch kindred (HPRTUtrecht), and led to an arginine for glycine change at residue 70. At position 16680, the G was substituted by a T in the Spanish family (HPRTMadrid); this substitutes a valine for glycine at residue 71. These new mutations are located within one of the clusters of hotspots in exon 3 of the HPRT gene in which HPRTYale and HPRTNew Haven have previously been identified.  相似文献   

13.
Mutations of the transforming growth factor-beta type II receptor (TGF-beta RII) gene have been detected in several human cancers. However, mutation analysis of coding sequences of TGF-beta RII in gastric carcinomas has not yet been fully elucidated. We performed PCR-SSCP analysis and direct DNA sequencing of the entire coding region of TGF- RII in 38 human sporadic gastric cancers and 8 gastric cancer cell lines. Mutations of the TGF-beta RII were detected in two tumors and three cell lines. Two tumors had one base deletion in the polyadenine tract in exon 3, the cystein-rich extracellular domain. Three cell lines had a silent mutation in the kinase domain located in exon 4. Polymorphisms were detected in introns 2 and 3. An a/g polymorphism was observed at the seventh base in intron 2 and an a/t polymorphism was observed at the fourth to last base in intron 3. There were no mutations in exons 1, 2, 5, 6 and 7. These results indicate that the polyadenine tract in the TGF-beta RII is a mutational hot spot in human gastric cancer. However, these results also suggest that mutations of the gene are rare events in human sporadic gastric cancer.  相似文献   

14.
15.
One of the earliest steps in pre-mRNA recognition involves binding of the splicing factor U2 snRNP auxiliary factor (U2AF or MUD2 in Saccharomyces cerevisiae) to the 3' splice site region. U2AF interacts with a number of other proteins, including members of the serine/arginine (SR) family of splicing factors as well as splicing factor 1 (SF1 or branch point bridging protein in S. cerevisiae), thereby participating in bridging either exons or introns. In vertebrates, the binding site for U2AF is the pyrimidine tract located between the branch point and 3' splice site. Many small introns, especially those in nonvertebrates, lack a classical 3' pyrimidine tract. Here we show that a 59-nucleotide Drosophila melanogaster intron contains C-rich pyrimidine tracts between the 5' splice site and branch point that are needed for maximal binding of both U1 snRNPs and U2 snRNPs to the 5' and 3' splice site, respectively, suggesting that the tracts are the binding site for an intron bridging factor. The tracts are shown to bind both U2AF and the SR protein SRp54 but not SF1. Addition of a strong 3' pyrimidine tract downstream of the branch point increases binding of SF1, but in this context, the upstream pyrimidine tracts are inhibitory. We suggest that U2AF- and/or SRp54-mediated intron bridging may be an alternative early recognition mode to SF1-directed bridging for small introns, suggesting gene-specific early spliceosome assembly.  相似文献   

16.
17.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

18.
19.
20.
Nuclear pre-messenger RNA splicing requires the action of five small nuclear (sn) RNAs, U1, U2, U4, U5 and U6, and more than 50 proteins. The mechanistic similarity of nuclear pre-mRNA splicing and group II self-splicing suggests that many of the central processes of nuclear pre-mRNA splicing are based on RNA-RNA interaction. To understand the mechanism of pre-mRNA splicing, the interactions, and their temporal relationships, that occur between the snRNAs and the pre-mRNA during splicing must be identified. Several snRNA-snRNA and snRNA-intron interactions have been demonstrated but the putative RNA-based interactions that recognize the AG dinucleotide at the 3' splice site during 3' cleavage and exon ligation are unknown. We report here the reciprocal suppression between 5' and 3' splice site mutations in the yeast actin intron, and propose that the 3' splice site is positioned for 3' cleavage and exon ligation, at least in part, through a non-Watson-Crick interaction between the guanosines at the 5' and 3' splice sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号