首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performance of nanofiltration for arsenic removal   总被引:19,自引:0,他引:19  
Sato Y  Kang M  Kamei T  Magara Y 《Water research》2002,36(13):3371-3377
Performance of rapid sand filtration inter-chlorination system was compared with nanofiltration (NF) to reduce the arsenic health risk of drinking water. It was found that rapid sand filtration with inter-chlorination is not effective in removing arsenic. If total arsenic concentration in raw water is below 50 microg/L regardless of the turbidity of raw water, arsenic can be removed below WHO guideline value of 10 microg/L by conventional coagulation (polyaluminum chloride dosage is about 1.5 mg Al/L). However, if the raw water arsenic concentration exceeds 50 microg/L, more coagulant dosage or enhanced coagulation is needed. To adopt optimum coagulant dosage for arsenic removal, it needs to monitor raw water arsenic concentration, but it is difficult because arsenic measurement is time consuming. In addition, if raw water contains As(III), it is difficult for rapid sand filtration inter-chlorination system to meet an arsenic maximum contaminant level of 2 microg/L, which would achieve reduction of cancer risk below 10(-4). On the other hand, the NF membrane (NaCl rejection 99.6%) could remove over 95% of As(V) under relatively low-applied pressure (< 1.1 MPa). Furthermore, more than 75% of As(III) could be removed using this membrane without any chemical additives, while trivalent arsenic could not be removed by rapid sand filtration system without pre-oxidation of As(III) to As(V). Because both As(V) and As(III) removals by NF membranes were not affected by source water composition, it is suggested that NF membrane can be used in any types of waters.  相似文献   

2.
黄浦江水源及净水过程中水质的生物急性毒性分析   总被引:2,自引:0,他引:2  
应用发光细菌法对黄浦江闵行段及闵行二水厂各处理单元出水的生物急性毒性进行了测定与评价。结果表明:黄浦江闵行段水体的生物急性毒性与沿途污染物的排放、汇入和水文特征有关,水厂取水口处的毒性最低。在净水过程中,水质的生物急性毒性变化受投加氧化剂和消毒剂的影响较大,投加KMnO4及加氯加氨均可使生物急性毒性升高;当余氯浓度降低后,其毒性会显著降低。絮凝沉淀、砂滤单元可使生物急性毒性降低。  相似文献   

3.
Organophosphate ester flame retardants and plasticizers like tris-(2-chloro-, 1-methyl-ethyl)phosphate (TCPP), tris-(2-chloro-, 1-chloromethyl-ethyl)phosphate (TDCP), tris-(2-chloroethyl)phosphate (TCEP), tributylphosphates, triphenylphosphate (TPP), ethylhexyldiphenylphosphate (EHDPP) and tris-(butoxyethyl)phosphate (TBEP) have been studied in diverse processes for drinking water purification. The elimination efficiency of these different treatment processes, e.g., biological active slow underground passage, soil passage and technical treatment processes such as ozonization or multilayer and activated carbon filtration have been studied in three waterworks in the catchment area of the river Ruhr. In the untreated surface water the concentrations of the chlorinated organophosphates ranged 50-150 ng L(-1) TCPP, 10-130 ng L(-1) TCEP and 10-40 ng L(-1) TDCP. The amounts of the non-chlorinated alkylphosphates were in the same order of magnitude (40 ng L(-1) of the tributylphosphates, 170 ng L(-1) of TBEP and 10 ng L(-1) TPP) depending on weather and water flow. EHDPP was detected in the range of 1 ng L(-1). After the drinking water purification process in all waterworks in this study, the concentrations of the selected substances were below the respective limit of quantification (0.3-3 ng L(-1)). While activated carbon filtration as well as extended passage through soil (10-15 days residence time) were effective in eliminating all selected compounds, ozonization and multilayer filtration did not contribute to the elimination of the chlorinated compounds. The elimination effect of slow underground passage combined with soil passage concerning the halogenated compounds seemed to depend on the hydraulic residence time.  相似文献   

4.
Eutrophication is a serious problem in Polish freshwaters. Mass occurrences of toxic cyanobacteria in reservoirs cause problems in the production of safe drinking water and the diversity of produced toxins complicates monitoring of freshwaters. The aim of this study was to estimate the efficiency of water treatment processes in the removal of microcystins (MCs), cyanobacterial hepatotoxins. Elimination of microcystins was studied at two waterworks, which supply drinking water to the city of Lodz from Sulejow Reservoir. The consecutive steps of pre-oxidation, coagulation, sand filtration, ozonation and chlorination used in the water treatment showed effective elimination of microcystins in water from Sulejow Reservoir in 2002 and 2003. The highest total concentration of microcystin (variants MC-RR, MC-YR, MC-LR) amounted to 6.7 microgl(-1) in raw water and was detected on the 13th of August 2002. In 2003 the water utility decided to increase the contribution of ground water in the production of drinking water. This resulted in a decrease of microcystin in water during and after the treatment process. The current management strategy of the waterworks company includes mixing of surface water and ground water, which reduces the hazards caused by toxic cyanobacterial blooms in the reservoir.  相似文献   

5.
Leupin OX  Hug SJ 《Water research》2005,39(9):1729-1740
Removing arsenic from contaminated groundwater in Bangladesh is challenging due to high concentrations of As(III), phosphate and silicate. Application of zero-valent iron as a promising removal method was investigated in detail with synthetic groundwater containing 500 microg/L As(III), 2-3mg/L P, 20mg/L Si, 8.2mM HCO3-, 2.5mM Ca2+, 1.6mM Mg2+ and pH 7.0. In a series of experiments, 1L was repeatedly passed through a mixture of 1.5 g iron filings and 3-4 g quartz sand in a vertical glass column (10mm diameter), allowing the water to re-aerate between each filtration. At a flow rate of 1L/h, up to 8 mg/L dissolved Fe(II) was released. During the subsequent oxidation of Fe(II) by dissolved oxygen, As(III) was partially oxidized and As(V) sorbed on the forming hydrous ferric oxides (HFO). HFO was retained in the next filtration step and was removed by shaking of the sand-iron mixture with water. Rapid phosphate removal provided optimal conditions for the sorption of As(V). Four filtrations lead to almost complete As(III) oxidation and removal of As(tot) to below 50 microg/L. In a prototype treatment with a succession of four filters, each containing 1.5 g iron and 60 g sand, 36 L could be treated to below 50 microg/L in one continuous filtration, without an added oxidant.  相似文献   

6.
This work describes a very simple, fast and sensitive method based on the use of the optical immunosensor “RIver ANAlyser” (RIANA) to the determination of bisphenol A in a waters. RIANA is based on a rapid solid-phase indirect inhibition immunoassay that takes place at an optical transducer chip chemically modified with an analyte derivative. Fluorescence produced by labelled antibodies bound to the transducer is detected by photodiodes and can be correlated with the analyte concentration. The sensor surface can be regenerated thus allowing the performance of several measurements (around 300) with the same transducer. Each test cycle, including one regeneration step, is accomplished in 15 min. The detection limit achieved in the direct determination of bisphenol A in water with this system was 0.014 μg/L. Satisfactory repeatability, with relative standard deviations (RSD) ranging between 1.48% and 6.93% were obtained. The immunosensor method developed was applied to the monitoring of bisphenol A in various types of water collected in a waterworks (from the river water source to the finished drinking water) and validated against the results obtained in the same approach by a more traditional method, based on solid-phase extraction followed by liquid chromatography–mass spectrometry. Results obtained by both techniques were in general good agreement (considering the typical overestimation bias of immunoassays), and served to prove the satisfactory removal efficiency of the overall purification process applied in the waterworks and, in particular, of the sand filtration step.  相似文献   

7.
Hendel B  Marxsen J  Fiebig D  Preuss G 《Water research》2001,35(10):2484-2488
Activities of the extracellular enzymes beta-glucosidase and phosphatase and bacterial densities were investigated during the filtration process at several sites in a groundwater recharge plant at the Ruhr river (Hengsen recharge plant in Schwerte. Germany). Low numbers of microorganisms and low levels of activity in this type of habitat, compared to most surface waters, caused methodological problems when determining microbial activity. In this study, fluorigenic model substrates, which enable hydrolytic rates as low as 1 nmol (L x h)(-1) to be measured, were used to determine extracellular enzyme activities. Highest activities were determined in surface water (107 nmol (L x h)(-1) for beta-glucosidase and 252 nmol (L x h)(-1) for phosphatase). which decreased during the filtration process in the gravel prefilter and the main sand filter until the end of subsurface flow (1.6 nmol (L x h)(-1) and 6.8 nmol (L x h)(-1), respectively). Similarly, bacterial numbers decreased from 3.4 x 10(6) to 0.29 x 10(6) cells mL(-1). These data showed that microbial activity within the prefilter and the shallow layers of the sand filter had the greatest impact on water quality. In addition to its involvement in the continuous purification of surface water, the microbial community in the sand filter probably acts as a biological buffer against ephemeral increases in the loads of organic matter and nutrients in the recharge plant.  相似文献   

8.
Biogeochemical processes mediated by microorganisms in river sediments (hyporheic sediments) play a key role in river metabolism. Because biogeochemical reactions in the hyporheic zone are often limited to the top few decimetres of sediments below the water-sediment interface, slow filtration columns were used in the present study to quantify biogeochemical processes (uptakes of O2, DOC, and nitrate) and the associated microbial compartment (biomass, respiratory activity, and hydrolytic activity) at a centimetre scale in heterogeneous (gravel and sand) sediments. The results indicated that slow filtration columns recreated properly the aerobic-anaerobic gradient classically observed in the hyporheic zone. O2 and NO3- consumptions (256 +/- 13 microg of O2 per hour and 14.6 +/- 6.1 microg of N-NO3- per hour) measured in columns were in the range of values measured in different river sediments. Slow filtration columns also reproduced the high heterogeneity of the hyporheic zone with the presence of anaerobic pockets in sediments where denitrification and fermentation processes occurred. The respiratory and hydrolytic activities of bacteria were strongly linked with the O2 consumption in the experimental system, highlighting the dominance of aerobic processes in our river sediments. In comparison with these activities, the bacterial biomass (protein content) integrated both aerobic and anaerobic processes and could be used as a global microbial indicator in our system. Finally, slow filtration columns are an appropriate tool to quantify in situ rates of biogeochemical processes and to determine the relationship between the microbial compartment and the physico-chemical environment in coarse river sediments.  相似文献   

9.
The aim of this study was to investigate endotoxin concentrations in cyanobacterial water blooms and strains, and to assess the removal of endotoxins during drinking water treatment. Endotoxin concentrations were measured from 151 hepatotoxic, neurotoxic and non-toxic cyanobacterial water blooms by using Limulus amebocyte lysate (LAL) assay, and the results were compared to bacterial data. Endotoxin activities ranged from 20 to 3.8 x 10(4) endotoxin units (EU) per ml. Endotoxicity of the samples correlated with phycobiliprotein concentration that was used to assess cyanobacterial abundance, heterotrophic plate count, and Aeromonas spp. but it did not correlate with the number of coliforms or streptococci. The high endotoxin concentrations occasionally detected in the water bloom samples were probably due to Gram negative bacteria that existed together with cyanobacteria since the 26 axenic cyanobacterial strains from different genera that were studied showed very low endotoxin activity. No differences in endotoxin activity were detected between hepatotoxic, neurotoxic and non-toxic strains. Removal of endotoxins during drinking water treatment was studied at nine waterworks that previously had been associated with high numbers of cyanobacteria and that used different processes for water purification. Endotoxin concentration in raw waters ranged from 18 to 356 EU ml(-1). The treatment processes reduced 59-97% of the endotoxin activity; in the treated water the concentration ranged from 3 to 15 EU ml(-1). The most significant reduction occurred at the early stages of water treatment, during coagulation, settling and sand filtration. Activated carbon filtration either increased or had no effect on endotoxin concentration. Ozonation and chlorination had little effect on the endotoxin concentrations.  相似文献   

10.
Nitrification was developed within a biological filter to simultaneously remove biodegradable organic matter (BOM) and residual ammonia added to control bromate formation during the ozonation of drinking water. Testing was performed at pilot-scale using three filters containing sand and anthracite filter media. BOM formed during ozonation (e.g., assimilable organic carbon (396-572 microg/L), formaldehyde (11-20 microg/L), and oxalate (83-145 microg/L)) was up to 70% removed through biofiltration. Dechlorinated backwash water was required to develop the nitrifying bacteria needed to convert the residual ammonia (0.1-0.5 mg/L NH(3)-N) to nitrite and then to nitrate. Chlorinated backwash water resulted in biofiltration without nitrification. Deep-bed filtration (empty-bed contact time (EBCT) = 8.3 min) did not enhance the development of nitrification when compared with shallow-bed filtration (EBCT = 3.2 min). Variable filtration rates between 4.8 and 14.6 m/h (2 and 6 gpm/sf) had minimal impact on BOM removal. However, conversion of ammonia to nitrite was reduced by 60% when increasing the filtration rate from 4.8 to 14.6 m/h. The results provide drinking water utilities practicing ozonation with a cost-effective alternative to remove the residual ammonia added for bromate control.  相似文献   

11.
Total trihalomethane (TTHM) concentrations were determined in three chlorinated effluents (i.e. secondary and tertiary) from full-scale wastewater treatment plants (WWTP) in NE Spain over a 2-year monitoring period (May 2003-February 2005). Low TTHM concentrations (2-30 microg L(-1)), according to international standards for drinking water (80-150 microg L(-1)), were obtained in all samples analysed. The effects of (a) ammonia nitrogen and bromide concentrations, (b) UV light exposure, (c) tank storage, and (d) water temperature were evaluated. Two chlorination strategies were adopted: low chlorine dosages (2-5 mg Cl2 L(-1)) and a high-chlorine dosage (16 mg Cl2 L(-1)). The effects of storing chlorinated reclaimed water and of UV light exposure before chlorination were also evaluated. Samples collected over the 2-year monitoring period offered the possibility to assess the numerous variables affecting THM formation. A statistical evaluation of Platja d'Aro WWTP data set shows a low TTHM formation in the presence of high ammonia nitrogen concentration (p<0.05). That result can be attributed to the formation of chloramines by reaction with added chlorine, at doses below breakpoint chlorination. An increase in TTHM concentration in the presence of bromide (0-1 mg L(-1)) was also recorded (p<0.05). In contrast to published reports, TOC had a negative effect on TTHM formation. COD and turbidity had no statistical significance on TTHM formation. As expected, chlorination promoted TTHM formation in the three water reclamation plants monitored. Nevertheless, no statistical difference was observed when chlorinated effluents were kept in storage tanks. Exposure to UV light did not affect either formation or removal of TTHM. The relative production of TTHM during warm and cold seasons was also evaluated. TTHM production decreased with higher temperatures, but that could be attributed to the increase of ammonia nitrogen concentration observed during the warm summer seasons.  相似文献   

12.
The effect of a pilot water treatment plant upon naturally occurring and artificially high levels of bacteriophages and enteroviruses was investigated. The individual stages studied were flocculation and sedimentation, rapid sand filtration, an activated carbon column and a final chlorination stage. The flocculation and sedimentation unit was consistently effective with an average removal of 99.7 ± 0.3%. The efficiency of the rapid sand filter and the activated carbon column was dependent upon the frequency of back-washing. Both of these units were less effective when recently back-washed and in such cases their percentage removal was negligible when compared with the flocculation and sedimentation unit. The final chlorination unit was found to be very effective, and viruses could not be isolated after this stage provided that a residual free chlorine concentration of 0.4 mg l−1 was maintained.Examination of the data for the plant as a whole revealed that it was capable of removing greater than 99.9995% of any influent viruses.  相似文献   

13.
The distribution of chlorophyll and phytoplankton communities were compared to nutrient concentrations and hydrological parameters along the main stretch of the river Ebro. A progressive increase in planktonic chlorophyll was observed from the upper reaches to the middle section of the river. Chlorophyll reached a maximum (60-80 microg L(-1)) in the meandering section (downstream of the city of Zaragoza), where nutrient inputs (both N and P) and the residence time of the water are very high. In this meandering section phytoplankton assemblages consisted of large centric diatoms and Scenedesmus sp.pl. These longitudinal patterns were interrupted by the presence of three large reservoirs in the lower section of the river. In the section below the reservoirs, the shorter residence water time, the presence of the invasive zebra mussel, and the massive macrophyte development may explain the historical decrease in chlorophyll-a (from 20-45 microg L(-1) in the 1990s to the present 2-5 microg L(-1)). Phytoplankton densities were extremely poor in this section of the river, where large colonial Coelastrum sp.pl. and Pediastrum sp.pl. were the most characteristic taxa.  相似文献   

14.
Metformin, an antidiabetic drug with one of the highest consumption rates of all pharmaceuticals worldwide, is biologically degraded to guanylurea in wastewater treatment plants. Due to high metformin influent concentrations of up to 100 μg/L and its high but incomplete degradation both compounds are released in considerable amounts of up to several tens of μg/L into recipient rivers. This is the first systematic study on their environmental fate and the effectiveness of treatment techniques applied in waterworks to remove metformin and guanylurea from surface water influenced raw waters. The concentrations in surface waters depend strongly on the respective wastewater burden of rivers and creeks and are typically in the range of about 1 μg/L for metformin and several μg/L for guanylurea but can reach elevated average concentrations of more than 3 and 20 μg/L, respectively. Treatment techniques applied in waterworks were investigated by an extended monitoring program in three facilities and accompanied by laboratory-scale batch tests. Flocculation and activated carbon filtration proved to be ineffective for removal of metformin and guanylurea. During ozonation and chlorination experiments with waterworks-relevant ozone and chlorine doses they were partly transformed to yet unknown compounds. The effectiveness of the treatment steps under investigation can be ordered chlorination > ozonation > activated carbon filtration > flocculation. However, most effective for removal of both compounds at the three full-scale waterworks studied proved to be an underground passage (riverbank filtration or artificial groundwater recharge). A biological degradation is most likely as sorption can be neglected. This is based on laboratory batch tests conducted with three different soil materials according to OECD guideline 106. Since such treatment steps were implemented in all three drinking water treatment plants, even traces of metformin and its metabolite guanylurea could not be detected at the end of the treatment trains. Both can only be expected in finished drinking water if surface influenced raw water is used by direct abstraction without underground passage.  相似文献   

15.
The LC50 values (72 h) of 17beta-estradiol (E2), p-nonylphenol (NP) and bis-phenol-A (BPA) to adult male and female medaka were 3.5 and 3.5, 0.85 and 0.87, and 6.8 and 8.3 mg L(-1), respectively; the LC50 values to embryos were 0.46, 0.13 and 5.1 mg L(-1), respectively. The IC50 values for inhibition to egg hatching were 0.47, 0.85 and 9.0 mg L(-1), respectively. These values were much higher than concentrations detected in river water in Japan and the chemicals were considered to have no lethal effect on the fish in an aquatic environment. Mature male medaka was continuously exposed to 0.005, 0.05 or 1.0 microg L(-1) of E2, or to 0.1, 10 or 100 microg L(-1) of NP or BPA. Female specific proteins (FSP) were induced in the blood of male medaka that were exposed for 5 weeks to E2 higher than 0.005 microg L(-1), NP higher than 0.1 microg L(-1), or BPA higher than 10 microg L(-1). Based on these FSP inducible concentrations and reported concentrations of E2, NP and BPA in Japanese river water, some river water contaminated by E2 or NP could be estimated as the FSP inducible in male medaka.  相似文献   

16.
Perchlorate removal in sand and plastic media bioreactors   总被引:3,自引:1,他引:3  
The treatment of perchlorate-contaminated groundwater was examined using two side-by-side pilot-scale fixed-bed bioreactors packed with sand or plastic media, and bioaugmented with the perchlorate-degrading bacterium Dechlorosoma sp. KJ. Groundwater containing perchlorate (77microg/L), nitrate (4mg-NO(3)/L), and dissolved oxygen (7.5mg/L) was amended with a carbon source (acetic acid) and nutrients (ammonium phosphate). Perchlorate was completely removed (<4microg/L) in the sand medium bioreactor at flow rates of 0.063-0.126L/s (1-2gpm or hydraulic loading rate of 0.34-0.68L/m(2)s) and in the plastic medium reactor at flow rates of <0.063L/s. Acetate in the sand reactor was removed from 43+/-8 to 13+/-8mg/L (after day 100), and nitrate was completely removed in the reactor (except day 159). A regular (weekly) backwashing cycle was necessary to achieve consistent reactor performance and avoid short-circuiting in the reactors. For example, the sand reactor detention time was 18min (hydraulic loading rate of 0.68L/m(2)s) immediately after backwashing, but it decreased to only 10min 1 week later. In the plastic medium bioreactor, the relative changes in detention time due to backwashing were smaller, typically changing from 60min before backwashing to 70min after backwashing. We found that detention times necessary for complete perchlorate removal were more typical of those expected for mixed cultures (10-18min) than those for the pure culture (<1min) reported in our previous laboratory studies. Analysis of intra-column perchlorate profiles revealed that there was simultaneous removal of dissolved oxygen, nitrate, and perchlorate, and that oxygen and nitrate removal was always complete prior to complete perchlorate removal. This study demonstrated for the first time in a pilot-scale system, that with regular backwashing cycles, fixed-bed bioreactors could be used to remove perchlorate in groundwater to a suitable level for drinking water.  相似文献   

17.
The generation of disinfection by-products during water treatment can be controlled by reducing the levels of precursor species prior to the chlorination step. The Natural Organic Matter (NOM) is the principal organic precursor and conventional removal of pollutants such as coagulation, flocculation and filtration do not guarantee the total NOM removal. In this study the degradation of NOM model compounds (dihydroxy-benzene) as well as the removal of NOM from river water via photo-Fenton process in a CPC solar photo-reactor is presented. The effect of solar activated photo-Fenton reagent at pH 5.0 before and after a slow sand filtration (SSF) in waters containing natural iron species is investigated and the details reported. The results showed that the total transformation of dihydroxy-benzene compounds along a mineralization higher than 80% was obtained. The mineralization of the organic compounds dissolved in natural water was higher than in Milli-Q water, suggesting that the aqueous organic and inorganic components (metals, humic acids and photoactive species) positively affect the photocatalytic process. When 1.0 mg/L of Fe3+ is added to the system, the photo-Fenton degradation was improved. Therefore the photo-Fenton reagent could be an interesting complement to other processes for NOM removal. Comparing the response of two rivers as media for the organic compounds degradation it was observed that the NOM photo-degradation rate depends of the water composition.  相似文献   

18.
Cyanobacteria produce toxins that may contaminate drinking water sources. Among others, the presence of the alkaloid toxins cylindrospermopsin (CYN) and anatoxin-a (ANTX) constitutes a considerable threat to human health due to the acute and chronic toxicity of these compounds. In the present study, not previously reported second-order rate constants for the reactions of CYN and ANTX with chlorine and monochloramine and of CYN with potassium permanganate were determined and the influence of pH and temperature was established for the most reactive cases. It was found that the reactivity of CYN with chlorine presents a maximum at pH 7 (rate constant of 1265 M(-1)s(-1)). However, the oxidation of CYN with chloramine and permanganate are rather slow processes, with rate constants <1 M(-1)s(-1). The first chlorination product of CYN was found to be 5-chloro-CYN (5-Cl-CYN), which reacts with chlorine 10-20 times slower than the parent compound. The reactivity of ANTX with chlorine and chloramines is also very low (k<1M(-1)s(-1)). The elimination of CYN and ANTX in surface water was also investigated. A chlorine dose of 1.5 mg l(-1) was enough to oxidize CYN almost completely. However, 3 mg l(-1) of chlorine was able to remove only 8% of ANTX, leading to a total formation of trihalomethanes (TTHM) at a concentration of 150 microg l(-1). Therefore, chlorination is a feasible option for CYN degradation during oxidation and disinfection processes but not for ANTX removal. The permanganate dose required for CYN oxidation is very high and not applicable in waterworks.  相似文献   

19.
Laboratory and field tests were conducted to evaluate the effectiveness of a household filtration process and investigate the effects of phosphate and silicate on the removal of arsenic from Bangladesh groundwater by ferric hydroxides. Fe/As ratios of greater than 40 (mg/mg) were required to reduce arsenic to less than 50 microg/L in Bangladesh well water due to the presence of elevated phosphate and silicate concentrations. The household filtration process included co-precipitation of arsenic by adding a packet (approximately 2 g) of ferric and hypochlorite salts to 20 L of well water and subsequent filtration of the water through a bucket sand filter. A field demonstration study was performed to test the treatment system in seven households in Bangladesh in March and April 2000. Experimental results obtained from the participating families proved that the household treatment process removed arsenic from approximately 300 microg/L in the well water to less than 50 microg/L. The participating families liked this simple and affordable process and used it to prepare clean water for drinking and cooking. A larger scale field test is currently underway.  相似文献   

20.
某市贾第鞭毛虫和隐孢子虫污染现状   总被引:10,自引:3,他引:10  
利用免疫荧光分析技术对南方某市饮用水源水、自来水厂出水和污水处理厂进、出水中贾第鞭毛虫和隐孢子虫(两虫)的污染状况进行了调查,并就自来水厂常规处理工艺对两虫的去除特性进行了研究.结果显示:该市饮用水源水中的两虫密度分别为2~120个/100L和0~24个/100 L,自来水厂出水分别为0~12个/1000 L和0~8个/1000 L,污水处理厂进水中的两虫密度分别为7 200~18 300个/L和69~1 210个/L,二级处理出水的分别为6~153个/L和1~46个/L;混凝沉淀和过滤对两虫有较好的去除效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号