首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.  相似文献   

2.
A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L(-1) HNO3 in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 microg L(-1). The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.  相似文献   

3.
Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.  相似文献   

4.
2-{[1-(2-Hydroxynaphthyl) methylidene] amino} benzoic acid (HNMABA) was synthesized for solid phase extraction (SPE) to the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples by flame atomic absorption spectrophotometry (FAAS). These metals were sorbed as HNMABA complexes on activated carbon (AC) at the pH range of 5.0+/-0.2 and eluted with 6 ml of 1M HNO3 in acetone. The effects of sample volume, eluent volume and recovery have been investigated to enhance the sensitivity and selectivity of proposed method. The effect of interferences on the sorption of metal ions was studied. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The detection limits for the metals studied were in the range of 0.75-3.82 microg ml(-1). The proposed system produced satisfactory results for the determination of Co, Cu, Ni, Zn and Cd metals in environmental and biological samples.  相似文献   

5.
A new tris(2-aminoethyl) amine (TREN) functionalized silica gel (SG-TREN) was prepared and investigated for selective solid-phase extraction (SPE) of trace Cr(III), Cd(II) and Pb(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Identification of the surface modification was characterized and performed on the basis of FT-IR. The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III), Cd(II) and Pb(II) onto the SG-TREN were 32.72, 36.42 and 64.61 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 5 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of International Union of Pure and Applied Chemistry, the detection limits (3sigma) of this method for Cr(III), Cd(II) and Pb(II) were 0.61, 0.14 and 0.55 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=11). The application of this modified silica gel to preconcentration trace Cr(III), Cd(II) and Pb(II) of two water samples gave high accurate and precise results.  相似文献   

6.
Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL−1 Pb(II). The adsorption capacity of the solid phase was 0.20 mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97–104% by the proposed method.  相似文献   

7.
Trace amounts of Cu (II), Pb (II), and Cd (II) in a wastewater sample were preconcentrated with a novel cross‐linked magnetic chitosan modified with a new synthesised methionine‐glutaraldehyde Schiff''s base (MG‐Chi/Fe3O4) as a dispersive solid‐phase extraction (DSPE) adsorbent. The adsorbed metal ions were then eluted with a specific volume of suitable solution and determined by flame atomic absorption spectrometry (FAAS). Various parameters affecting the extraction efficiency of the metal ions were investigated and optimised, including pH, amount of adsorbent, extraction time, type and volume rate of eluent, elution time, sample volume, and effect of interfering ions. The adsorption kinetics are more consistent with the pseudo‐second order model. The results were statistically interpreted and the analytical performance of the proposed method was found to have preconcentration factors of 55, 60, and 50 μg L−1 for Cu(II), Pb(II), and Cd(II), respectively, limits of detection were 0.22, 0.24, and 0.10 μg L−1 for Cu(II), Pb(II), and Cd(II), respectively, with a relative standard deviation (1.5%‐2.8 %), and the liner range was 5–1000 for Cu(II) and Pb(II) and 2.5–1000 for Cd(II). It was concluded that this method was suitable for successful simultaneous determination of Cu(II), Pb(II), and Cd(II) in industrial wastewater samples.  相似文献   

8.
A solid phase extraction procedure is proposed for simultaneous separation and preconcentration trace amounts of Cu(II) and Cd(II) using alumina coated with N'-{4-[4-{1-[4-(dimethylamino)phenyl]methylidene}-5-(4-H)oxazolone]phenyle}acetamide and determination by flame atomic absorption spectrometry. Using 0.1g of the sorbent, the metal ions were sorbed at pH 7 and recovered with 5.0 mL of 0.5 mol L(-1) HNO(3). It was found that extraction can be performed from the sample volumes of 2000 and 800 mL for Cu and Cd, respectively (preconcentration factors of 400 for Cu and 160 for Cd). Obtained sorption capacities for 1g sorbent were 8 mg Cu and 14 mg Cd. The linearity was maintained in the concentration range of 0.1 ng mL(-1) to 7.0 μg mL(-1) for Cu and 0.13 ng mL(-1) to 2.0 μg mL(-1) for Cd in the original solution. Eight replicate determinations of a mixture containing 1.0 μg mL(-1) each of the elements in the final solution gave relative standard deviation ±1.6 and ±1.3% for Cu and Cd, respectively. The detection limit was calculated as 0.06 and 0.05 ng mL(-1) for Cu and Cd, respectively. The proposed method was successfully applied to the determination trace amounts of Cu and Cd in the water and plant samples.  相似文献   

9.
A new chelating resin was synthesized by functionalization of a polymer support, Amberlite XAD-2 with purpurin through an azo linkage (NN). The products were characterized by scanning electron microscopy, elemental analysis, Fourier transform infrared spectroscopy and thermogravimetric analysis. The optimum conditions for the extraction of Cd(II), Cr(III) and Pb(II) in two matrices; leachate from cement-based material and de-ionized water, were studied by batch and column methods. The determination of the metal ions was carried out by flame atomic absorption spectrometry. The optimum pH for the extraction of all metal ions in both matrices were at 4.0. Their sorption equilibrium was reached within 1h. The sorbed Cd(II) and Pb(II) were eluted by 1% HNO3 within 10 min with the desorption recovery of >90%. The elution of Cr(III) by 3% H2O2 in 0.1 M NaOH was achieved within 30 min with the desorption recovery of >80%. The sorption capacity of Cd(II), Cr(III) and Pb(II) onto the resin was 75.0, 68.2, 82.7 micromol g(-1) resin in DI water and 54.1, 46.5 and 55.7 micromol g(-1) resin in leachate, respectively. The extraction efficiency in the column method can be improved using the recirculation system. This new method gave a good accuracy in batch system with the recovery of 86.5 and 89.9% for Cd(II) and Pb(II) and R.S.D. less than 2.3% (n=14).  相似文献   

10.

Fe-Al-Mn nanocomposite has been synthesized by impregnating MnO2 with Fe and Al nitrate aqueous solution for preconcentration and determination of Pb (II), Cd (II) and U (VI) ions from aqueous solution. Fourier Transform Infrared spectroscopy (FTIR), X-Ray-diffraction (XRD) and Scanning electron microscopy coupled with energy dispersive X-ray detector (SEM–EDX) were employed to characterize the as-synthesized nanocomposite. The XRD result indicates that the as-synthesized nanocomposite had a crystal size with rhombohedral structure and size of 30.81 nm. FTIR results confirmed the presence of hydroxyl group and Metal–Oxygen vibration in the adsorbent. A sensitive and simple solid-phase preconcentration procedure for the determination of trace amounts of Pb(II) and Cd(II) ions by FAAS and U(VI) ions by Uv–Vis was developed. The adsorption isotherm was formally described by both Langmuir and Freundlich equation with a maximum adsorption capacity of 12.5 (Pb), 12.8(Cd) and 14.9(U) mg g?1 respectively with preconcentration factor of 15. The limits of detection were 0.09, 0.05 and 0.0097 mg L?1 and the relative standard deviation for ten replicate measurements were 2.47, 0.979 and 2.04%, for Pb (II), Cd(II) and U(VI) ions, respectively. The recovery of Pb(II), Cd(II) and U(VI) ions were found to be 92.7, 91.3, and 81.76%, respectively. On the basis of these findings, the as-synthesized Fe-Al-Mn nanocomposite was successfully applied as a solid phase extraction for preconcentration and determination of Pb(II), Cd(II) and U(VI) ions in aqueous solution.

  相似文献   

11.
Adsorptions of toxic metal ions (Pb(II) and Cd(II)) onto modified lignin from beech and poplar woods by alkali glycerol delignification are presented in this paper. The material exhibits good adsorption capacity and the adsorption data follow the Langmuir model. The maximum adsorption capacities are 8.2-9.0 and 6.7-7.5 mg/g of the modified lignin for Pb(II) and Cd(II), respectively. The maximum adsorption percentage is 95.8 for Pb(II) for 4 h at 330 K and is 95.0 for Cd(II) for 10 h at 290 K. The adsorption of both the metal ions increased with increasing temperature indicating endothermic nature of the adsorption process. The maximum adsorption percentages of Pb(II) and Cd(II) ions decrease with time till 48 and 42 h and then again increase slightly with time. The adsorption of both heavy metal ions increases with pH. The adsorption of Pb(II) ions reached a maximum at a 5.0 value of pH.  相似文献   

12.
A new method for the preconcentration of some trace metals (Co, Ni, Cu, and Cd) as complexed with ammonium pyrrolidynedithiocarbamate (APDC) was developed using a mini-column filled with Amberlite XAD-2000 resin. Metal contents were determined by flame atomic absorption spectrometry (FAAS) after the metal complexes accumulated on the resin were eluted with 1M HNO(3) in acetone. The effects of the analytical parameters such as sample pH, quantity of complexing agent, eluent type, resin quantity, sample volume, sample flow rate, and matrix ions were investigated on the recovery of the metals from aqueous solutions. The relative standard deviation (R.S.D.) of the method was <6%. The validation of the method was confirmed using two certified reference materials (CRM TMDW-500 Drinking Water and CRM SA-C Sandy Soil C). The method was successfully applied to some stream waters and mushroom samples from Eastern Black Sea Region (Trabzon city) of Turkey.  相似文献   

13.
Adsorption of metal ions on lignin   总被引:6,自引:0,他引:6  
This study investigated the adsorption of the heavy metal ions Pb(II), Cu(II), Cd(II), Zn(II), and Ni(II) on a lignin isolated from black liquor, a waste product of the paper industry. Lignin has affinity with metal ions in the following order: Pb(II)>Cu(II)>Cd(II)>Zn(II)>Ni(II). The adsorption kinetic data can be described well with a pseudosecond-order model and the equilibrium data can be fitted well to the Langmuir isotherm. Metal ion adsorption was strongly dependent on pH and ionic strength. Surface complexation modelling was performed to elucidate the adsorption mechanism involved. This shows that lignin surfaces contain two main types of acid sites attributed to carboxylic- and phenolic-type surface groups and the phenolic sites have a higher affinity for metal ions than the carboxylic sites.  相似文献   

14.
Modification of kaolinite clay mineral with orthophosphate (p-modified sample) enhanced adsorption of Pb and Cd ions from aqueous solutions of the metal ions. Increasing pH of solutions of metal ions, increasing adsorbent dose and increasing concentration of metal ion, increased the adsorption of metal ions. Adsorption of both metal ions simultaneously on both unmodified and p-modified samples indicates that adsorption of one metal ion is suppressed to some degree by the other. The presence of electrolyte and their increasing concentration reduced the adsorption capacities of both unmodified and p-modified samples for the metal ions. Ca-electrolytes had more negative effect on the adsorption capacities of the adsorbents than Na-electrolytes. Ca-electrolytes reduced adsorption capacities of the adsorbents for Pb and Cd ions. From Langmuir plots it was observed that these electrolytes increased the binding energy constant of the metal ions unto the adsorbents especially on the p-modified samples. The rate of adsorption of Pb and Cd ions on p-modified adsorbent were increased and equilibrium of metal ion solution were more quickly reached (8min for Pb ions and 12min for Cd ions) with p-modified adsorbent as against 20min for adsorption of both metal ions on unmodified adsorbent when 200mg/L of metal ion solutions were used during the kinetic studies. When adsorption data were fitted against Langmuir, Freundlich, Toth and Langmuir-Freundlich isotherms, satisfactory fits were found with the Freundlich isotherm. However, at low concentration of metal ions, data also showed satisfactory fits to Langmuir isotherm.  相似文献   

15.
Grape waste as a biosorbent for removing Cr(VI) from aqueous solution   总被引:3,自引:0,他引:3  
Grape waste generated in wine production is a cellulosic material rich in polyphenolic compounds which exhibits a high affinity for heavy metal ions. An adsorption gel was prepared from grape waste by cross-linking with concentrated sulfuric acid. It was characterized and utilized for the removal of Cr(VI) from synthetic aqueous solution. Adsorption tests were conducted in batch mode to study the effects of pH, contact time and adsorption isotherm of Cr(VI), which followed the Langmuir type adsorption and exhibited a maximum loading capacity of 1.91 mol/kg at pH 4. The adsorption of different metal ions like Cr(VI), Cr(III), Fe(III), Zn(II), Cd(II) and Pb(II) from aqueous solution at different pH values 1-5 has also been investigated. The cross-linked grape waste gel was found to selectively adsorb Cr(VI) over other metal ions tested. The results suggest that cross-linked grape waste gel has high possibility to be used as effective adsorbent for Cr(VI) removal.  相似文献   

16.
Pb(II) and Cd(II) removal from aqueous solutions by olive cake   总被引:1,自引:0,他引:1  
The removal of heavy metals from wastewater using olive cake as an adsorbent was investigated. The effect of the contact time, pH, temperature, and concentration of adsorbate on adsorption performance of olive cake for Pb(II) and Cd(II) ions were examined by batch method. Adsorption of Pb(II) and Cd(II) in aqueous solution onto olive cake was studied in single component. After establishing the optimum conditions, elution of these ions from the adsorbent surface was also examined. The optimum sorption conditions were determined for two elements. Maximum desorption of the Pb(II) and Cd(II) ions were found to be 95.92 and 53.97% by 0.5M HNO(3) and 0.2M HCl, respectively. The morphological analysis of the olive cake was performed by the scanning electron microscopy (SEM).  相似文献   

17.
In the presented work, alpha-benzoin oxime immobilized SP70 chelating resin was synthesized for separation and preconcentration of Pb(II), Cd(II), Co(II) and Cr(III). The optimization procedure for analytical parameters including pH, eluent type, flow rate, etc. was examined in order to gain quantitative recoveries of analyte ions. The effects of foreign ions on the recoveries of studied metal ions were also investigated. The detection limits (3sigma) were found to be 16.0, 4.2, 1.3, 2.4microgL(-1) for Pb, Cd, Co and Cr, respectively. The preconcentration factor was 75 for Pb, 100 for Cd, Co and Cr. The optimized method was validated with certified reference materials and successfully applied to the waters, crops and pharmaceutical samples with good results (recoveries greater than 95%, R.S.D. lower than 10%).  相似文献   

18.
Removal of some divalent heavy metal ions (Cu(2+), Zn(2+), Pb(2+), Cd(2+), Co(2+)) from aqueous solutions using carbon nanotube (CNT) sheets was performed. CNT sheets were synthesized by chemical vapor deposition of cyclohexanol and ferrocene in nitrogen atmosphere at 750°C, and oxidized with concentrated nitric acid at room temperature and then employed as adsorbent for water treatment. Langmuir and Freundlich isotherms were used to describe the adsorption behavior of heavy metal ions by oxidized CNT sheets. The obtained results demonstrated that the oxidized CNT sheets can be used as an effective adsorbent for heavy metal ions removal from water. It was found out that kinetics of adsorption varies with initial concentration of heavy metal ions. Preference of adsorption onto the oxidized CNT sheets can be ordered as Pb(2+)>Cd(2+)>Co(2+)>Zn(2+)>Cu(2+). Using the oxidized CNT sheets, waste water treatment without CNT leakage into water is economically feasible. Therefore, CNT sheets have good potential application in environmental protection.  相似文献   

19.
A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 molL(-1) HNO3 in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 microgL(-1), respectively. The preconcentration factor was 200. The relative standard deviation of the method was <6%. The adsorption capacity of the resin was 12.3 mg g(-1). The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples.  相似文献   

20.
王彦  张东 《材料保护》2007,40(5):74-75
采用酚醛树脂对天然腐植酸交联固化,制备成腐植酸酚醛树脂.采用火焰原子吸收分光光度法(FAAS)研究了腐植酸酚醛树脂对铅的吸附性能.结果表明,腐植酸酚醛树脂对铅有较强的吸附能力,吸附量受介质pH值的影响,当pH值大于3.0时,铅可被定量吸附,最大吸附量可达17.28 mg/g.吸附于树脂上的铅可以用0.1 mol/L的HNO3溶液完全解脱.以FAAS法为检测手段,对镀铬液中痕量铅进行分离富集,建立了电镀液中痕量铅的测定新方法,应用于实际样品的测定,结果满意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号