首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
An endothermic methanol steam reformer achieves optimal performance at a temperature of about 240 °C. A polybenzimidazole (PBI) membrane fuel cell was operated exothermically at 160 °C–200 °C. To better couple the lower temperature fuel cell to the higher temperature steam reformer, a two-stage temperature steam reformer to integrate into the PBI membrane fuel cell system is proposed. The reformer optimizes thermal management and increases the system efficiency.  相似文献   

2.
An anion exchange membrane for alkaline direct methanol fuel cell (ADMFC) was prepared by doping polybenzimidazole(PBI) membrane with KOH. The obtained membrane was characterized by means of XRD, TGA–DTA, AC and so on. The results suggested that it possessed satisfying thermal stability and comparable mechanical strength with acid doped PBI. At room temperature, methanol permeability through this membrane was one order of magnitude lower than that of Nafion® membrane, while its ionic conductivity was comparable with that of other anion exchange membranes in literatures. For ADMFC at 90 °C based on this PBI/KOH membrane electrolyte, the peak power density was about 31 mW/cm2, which was significantly improved mainly due to this membrane's high thermal stability, fast kinetics of electrochemical reactions and lower methanol permeability.  相似文献   

3.
This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system. The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system is shown at different reformer temperatures and fuel flows, using the implemented reformer control strategy. The gas quality of the output reformate gas is of HTPEM grade quality, and sufficient for supporting efficient and reliable HTPEM fuel cell operation with CO concentrations of around 1% at the nominal reformer operating temperatures. As expected increasing temperatures also increase the dry gas CO content of the reformate gas and decreases the methanol slip. The hydrogen content of the gas was measured at around 73% with 25% CO2.  相似文献   

4.
The objective of this work is to examine the polybenzimidazole (PBI)/sulfonated graphene oxide (sGO) membranes as alternative materials for high-temperature proton exchange membrane fuel cell (HT-PEMFC). PBI/sGO composite membranes were characterized by TGA, FTIR, SEM analysis, acid doping&acid leaching tests, mechanical analysis, and proton conductivity measurements. The proton conductivity of composite membranes was considerably enhanced by the existence of sGO filler. The enhancement of these properties is related to the increased content of –SO3H groups in the PBI/sGO composite membrane, increasing the channel availability required for the proton transport. The PBI/sGO membranes were tested in a single HT-PEMFC to evaluate high-temperature fuel cell performance. Amongst the PBI/sGO composite membranes, the membrane containing 5 wt. % GO (PBI/sGO-2) showed the highest HT-PEMFC performance. The maximum power density of 364 mW/cm2 was yielded by PBI/sGO-2 membrane when operating the cell at 160 °C under non humidified conditions. In comparison, a maximum power density of 235 mW/cm2 was determined by the PBI membrane under the same operating conditions. To investigate the HT-PEMFC stability, long-term stability tests were performed in comparison with the PBI membrane. After a long-term performance test for 200 h, the HT-PEMFC performance loss was obtained as 9% and 13% for PBI/sGO-2 and PBI membranes, respectively. The improved HT-PEMFC performance of PBI/sGO composite membranes suggests that PBI/sGO composites are feasible candidates for HT-PEMFC applications.  相似文献   

5.
Development of anion exchange membranes (AEMs) with good performance, such as high conductivity, good alkaline stability and mechanical strength, has been a hot topic for the fuel cell application. Here, a novel kind of hyperbranched cross-linker decorated with quaternary ammonium groups was introduced to polybenzimidazole (PBI) membranes and QOPBI-x membranes (where x is the weight ratio of the hyperbranched cross-linker). Compared with the linear OPBI membrane (0.091 S cm−1), QOPBI-x membranes displayed an improved ionic conductivity (up to 0.122 S cm−1) at 60°C after they were doped in 6 M KOH for 7 days. The KOH-doped QOPBI-x membranes also exhibited a high tensile strength (54.5-61.7 MPa) and superior alkaline stability. There is almost no decline in the ionic conductivity after being immersed in a 6 M KOH solution for 30 days. In addition, the alkaline direct methanol fuel cell (ADMFC) performance based on the KOH-doped OPBI and QOPBI-x membranes is described. The QOPBI-15 membrane displayed good performance (75.6 mW cm−2), which is 33.3% higher than the OPBI membrane (56.7 mW cm−2).  相似文献   

6.
Low-temperature polymer electrolyte membrane fuel cell (PEMFC) acts as a promising energy source due to the non-pollution and high-energy density. However, as hydrogen supply is a major constraint limiting the wide spread of fuel cell vehicles, a dimethyl ether (DME)-steam on-board reformer (SR) based on catalytic reforming via a catalytic membrane reactor with a channel structure is a possible solution to a direct hydrogen supply. The DME-SR reaction scheme and kinetics in the presence of a catalyst of CuO/ZnO/Al2O3+ZSM-5 are functions of the temperature and hydrocarbon ratio in the hydrogen-reforming reaction. An electric heater is provided to keep the temperature at a demanded value to produce hydrogen. As there is no available analysis tool for the fuel cell battery hybrid vehicle with on-board DME reformer, it is necessary to develop the tool to study the dynamic characteristics of the whole system. Matlab/Simulink is utilized as a dynamic simulation tool for obtaining the hydrogen production and the power distribution to the fuel cell. The model includes the effects of the fuel flow rate, the catalyst porosity, and the thermal conductivity of different subsystems. A fuel cell model with a battery as a secondary energy storage is built to validate the possible utilization of on-board reformer/fuel cell hybrid vehicle. In consideration of time-delay characteristic of the chemical reactions, the time constant obtained from the experiment is utilized for obtaining dynamic characteristics. The hydrogen supplied by the reformer and the hydrogen consumed in the PEMFC prove that DME reformer can supply the adequate hydrogen to the fuel cell hybrid vehicle to cope with the required power demands.  相似文献   

7.
In this paper, a hybrid fuel cell system integrated with methanol steam reformer and methanation reactor is demonstrated. Methanol steam reformer employed in this system is to produce hydrogen-rich reformate in connection with a methanation reactor to reduce the carbon monoxide content effectively, and the reformate gas is sent into a low-temperature polymer electrolyte fuel cell for direct electric power generation. The optimum conditions (temperature, water to methanol ratio, and space velocity) for methanol steam reforming (MSR) reaction and methanation (MET) reaction are verified by experiments. A comparison between pure hydrogen, reformate surrogate, and actual reformate is performed. The results show that the power density of this hybrid system achieves 245.2 mW/cm2 while it achieves 268.8 mW/cm2 when employing pure hydrogen as the fuel. An alternative novel method to solve the problem of hydrogen storage and transportation is provided and the in-situ hydrogen production and utilizing through low-temperature fuel cell system is realized, which is helpful to accelerate the commercialization process of the fuel cell.  相似文献   

8.
Fuel cells have great application potential as stationary power plants, as power sources in transportation, and as portable power generators for electronic devices. Most fuel cells currently being developed for use in vehicles and as portable power generators require hydrogen as a fuel. Chemical storage of hydrogen in liquid fuels is considered to be one of the most advantageous options for supplying hydrogen to the cell. In this case a fuel processor is needed to convert the liquid fuel into a hydrogen-rich stream. This paper presents a second-law analysis of an integrated fuel processor and fuel cell system. The following primary fuels are considered: methanol, ethanol, octane, ammonia, and methane. The maximum amount of electrical work and corresponding heat effects produced from these fuels are evaluated. An exergy analysis is performed for a methanol processor integrated with a proton exchange membrane fuel cell, for use as a portable power generator. The integrated FP–FC system, which can produce 100 W of electricity, is simulated with a computer model using the flow-sheeting program Aspen Plus. The influence of various operating conditions on the system efficiency is investigated, such as the methanol concentration in the feed, the temperature in the reformer and in the fuel cell, as well as the fuel cell efficiency. Finally, it is shown that the calculated overall exergetic efficiency of the FP–FC system is higher than that of typical combustion engines and rechargeable batteries.  相似文献   

9.
An anion exchange membrane for alkaline direct ethanol fuel cell (ADEFC) was prepared by doping KOH in polybenzimidazole (PBI) membrane. The distributions of nitrogen, oxygen and potassium in the membrane were analyzed by means of XRD and SEM-EDX, respectively. It was found that free or combined KOH molecules may exist in the PBI matrix, which was helpful for the ionic conductivity of PBI/KOH. Ethanol permeability through this membrane was much lower than that of Nafion®. For ADEFC based on this PBI/KOH membrane electrolyte, the power density was 3 to 6 times of the results in literatures. In addition, the micro-structure of alkali doped PBI and the interaction between KOH and PBI matrix were also speculated logically.  相似文献   

10.
A high conductivity composite proton-exchange membrane Cs2.5H0.5PMo12O40 (CsPOM)/polybenzimidazole (PBI) for use in hydrogen proton-exchange fuel cells has been prepared. The CsPOM composite membrane is insoluble in water. The composite membrane doped with H3PO4 showed high-proton conductivity (>0.15 S cm−1) and good thermal stability. 31P NMR analysis has suggested the formation of a chemical bond between the CsPOM and PBI in the composite membrane. The performance of the membrane in a high-temperature proton-exchange membrane fuel cell (PEMFC) fueled with hydrogen was better than that with a phosphoric acid-doped PBI membrane under the same conditions and at temperatures greater than 150 °C. The CsPOM/PBI composite would appear to be a promising material for high-temperature PEMFC applications.  相似文献   

11.
The method of Computational Fluid Dynamics is used to predict the process parameters and select the optimum operating regime of a methanol reformer for on-board production of hydrogen as fuel for a 3 kW High-Temperature Proton Exchange Membrane Fuel Cell power system. The analysis uses a three reactions kinetics model for methanol steam reforming, water gas shift and methanol decomposition reactions on Cu/ZnO/Al2O3 catalyst. Numerical simulations are performed at single channel level for a range of reformer operating temperatures and values of the molar flow rate of methanol per weight of catalyst at the reformer inlet. Two operating regimes of the fuel processor are selected which offer high methanol conversion rate and high hydrogen production while simultaneously result in a small reformer size and a reformate gas composition that can be tolerated by phosphoric acid-doped high temperature membrane electrode assemblies for proton exchange membrane fuel cells. Based on the results of the numerical simulations, the reactor is sized, and its design is optimized.  相似文献   

12.
《Journal of power sources》2005,145(2):683-690
Within the European project BIOFEAT (biodiesel fuel processor for a fuel cell auxiliary power unit for a vehicle), a complete modular 10 kWe biodiesel fuel processor capable of feeding a PEMFC will be developed, built and tested to generate electricity for a vehicle auxiliary power unit (APU). Tail pipe emissions reduction, increased use of renewable fuels, increase of hydrogen-fuel economy and efficient supply of present and future APU for road vehicles are the main project goals. Biodiesel is the chosen feedstock because it is a completely natural and thus renewable fuel.Three fuel processing options were taken into account at a conceptual design level and compared for hydrogen production: (i) autothermal reformer (ATR) with high and low temperature shift (HTS/LTS) reactors; (ii) autothermal reformer (ATR) with a single medium temperature shift (MTS) reactor; (iii) thermal cracker (TC) with high and low temperature shift (HTS/LTS) reactors. Based on a number of simulations (with the AspenPlus® software), the best operating conditions were determined (steam-to-carbon and O2/C ratios, operating temperatures and pressures) for each process alternative. The selection of the preferential fuel processing option was consequently carried out, based on a number of criteria (efficiency, complexity, compactness, safety, controllability, emissions, etc.); the ATR with both HTS and LTS reactors shows the most promising results, with a net electrical efficiency of 29% (LHV).  相似文献   

13.
A complete miniaturized methanol fuel processor/fuel cell system was developed and put into operation as compact hydrogen supplier for low power application. The whole system consisting of a micro-structured evaporator, a micro-structured reformer and two stages of preferential oxidation of CO (PROX) reactor, micro-structured catalytic burner, and fuel cell was operated to evaluate the performance of the whole production line from methanol to electricity. The performance of micro methanol steam reformer and PROX reactor was systematically investigated. The effect of reaction temperature, steam to carbon ratio, and contact time on the methanol steam reformer performance is presented in terms of catalytic activity, selectivity, and reformate yield. The performance of PROX reactor fed with the reformate produced by the reformer reactor was evaluated by the variation of reaction temperature and oxygen to CO ratio. The results demonstrate that micro-structured device may be an attractive power source candidate for low power application.  相似文献   

14.
Based on a high temperature proton exchange membrane fuel cell (HT-PEMFC), a cogeneration system is proposed to produce heat and power. The system includes a coke oven gas steam reformer, a water gas shift reactor, and an afterburner. The system is analyzed in detail considering the energy, exergy and economic viewpoints. The analyses reveal the importance of HT-PEMFC in the system and according to the results, 9.03 kW power is generated with energy and exergy efficiencies of 88.2% and 26.2%, respectively and the total product unit cost is calculated as 91.8 $/GJ. Through a parametric study the effects on system performance are studied of such variables as the current density, fuel cell and reformer operating temperatures, and cathode stoichiometric ratio. It is found that an increase in the fuel cell temperature and/or a decrease in the reformer temperature enhance the exergy efficiency. The exergy efficiency is also maximized at the cathode stoichiometric ratio of 2.4. By performing a two-objective optimization using genetic algorithm, the best operating point is determined at which the exergy efficiency is (32.86%) and the total product unit cost is (78.68 $/GJ).  相似文献   

15.
The cold-start behavior and the effect of sub-zero temperatures on fuel cell performance were studied using a 25-cm2 proton exchange membrane fuel cell (PEMFC). The fuel cell system was housed in an environmental chamber that allowed the system to be subjected to temperatures ranging from sub-freezing to those encountered during normal operation. Fuel cell cold-start was investigated under a wide range of operating conditions. The cold-start measurements showed that the cell was capable of starting operation at −5 °C without irreversible performance loss when the cell was initially dry. The fuel cell was also able to operate at low environmental temperatures, down to −15 °C. However, irreversible performance losses were found if the cell cathode temperature fell below −5 °C during operation. Freezing of the water generated by fuel cell operation damaged fuel cell internal components. Several low temperature failure cases were investigated in PEM fuel cells that underwent sub-zero start and operation from −20 °C. Cell components were removed from the fuel cells and analyzed with scanning electron microscopy (SEM). Significant damage to the membrane electrode assembly (MEA) and backing layer was observed in these components after operation below −5 °C. Catalyst layer delamination from both the membrane and the gas diffusion layer (GDL) was observed, as were cracks in the membrane, leading to hydrogen crossover. The membrane surface became rough and cracked and pinhole formation was observed in the membrane after operation at sub-zero temperatures. Some minor damage was observed to the backing layer coating Teflon and binder structure due to ice formation during operation.  相似文献   

16.
The performance of a novel electro-reformer for the production of hydrogen by electro-reforming alcohols (methanol, ethanol and glycerol) without an external electrical energy input is described. This tandem cell consists of an alcohol fuel cell coupled directly to an alcohol reformer, negating the requirement for external electricity supply and thus reducing the cost of operation and installation. The tandem cell uses a polymer electrolyte membrane (PEM) based fuel cell and electrolyser. At 80 °C, hydrogen was generated from methanol, by the tandem PEM cell, at current densities above 200 mA cm−2, without using an external electricity supply. At this condition the electro-reformer voltage was 0.32 V at an energy input (supplied by the fuel cell component) of 0.91 kWh/Nm3; i.e. less than 20% of the theoretical value for hydrogen generation by water electrolysis (4.7 kWh/Nm3) with zero electrical energy input from any external power source. The hydrogen generation rate was 6.2 × 10−4 mol (H2) h−1. The hydrogen production rate of the tandem cell with ethanol and glycerol was approximately an order of magnitude lower, than that with methanol.  相似文献   

17.
In this study, a highly ion-conductive and durable porous polymer electrolyte membrane based on ion solvating polybenzimidazole (PBI) was developed for anion exchange membrane fuel cells (AEMFCs). The introduction of porosity can increase the attraction of electrolytic solutions (e.g., potassium hydroxide (KOH)) and ion solvation, which results in the enhancement of PBI's ionic conductivity. The morphology, thermo-physico-chemical properties, ionic conductivity, alkaline stability, and the AEMFC performance of KOH-doped PBI membranes with different porosities were characterized. The ionic conductivity and AEMFC performance of 70 wt.% porous PBI was about 2 times higher than that of the commercially available Fumapem® FAA. All KOH-doped porous PBI membranes maintained their ionic conductivity after accelerated alkaline stability testing over a period of 14 days, while the commercial FAA degraded just after 3 h. The excellent performance and good durability of KOH-doped porous PBI membrane makes it a promising candidate for AEMFCs.  相似文献   

18.
Hyperbranched poly(benzimidazole-co-benzene) (PBIB) with a honeycomb structure is synthesized by condensation polymerization of trimesic acid (TMA) and 3,3′-diaminobenzidine (DAB) for use as a membrane high-temperature proton-exchange membrane fuel cells (HT-PEMFCs). The hyperbranched honeycomb structure of polybenzimidazole (PBI) has been introduced to impart higher mechanical strength to doped PBI membranes. The stress at break of the phosphoric acid doped PBIB (DPBIB) membrane (29 ± 3 MPa) is comparable with that of Nafion (28 ± 2 MPa) and much superior to doped PBI membranes. The DPBIB membrane exhibits lower proton conductivity than Nafion 115. On the other hand, the proton conductivity of Nafion 115 is enhanced with increase in relative humidity, whereas humidity has only a moderate effect on the proton conductivity of the DPBIB membrane. Consequently, the Nafion 115 membrane in a fuel cell cannot operate in the absence of humidity, whereas the DPBIB membrane can perform well. The power output of the DPBIB membrane in a fuel cell is superior under humid conditions than under dry conditions. The maximum power output from the DPBIB and Nafion 115 membranes is comparable under humid conditions. It is concluded that the DPBIB membrane, but not Nafion, is suitable for application in HT-PEMFCs.  相似文献   

19.
H+-ion concentration cell, which can harvest thermal energy to generate electricity by hydrogen concentration difference principle with a fuel cell structure, is an innovative thermoelectric conversion device. In this system, phosphoric acid-doped polybenzimidazole (PA-doped PBI) membrane is a key component influencing the power generation performance of the cell. Herein, 30, 45, 60, 75, and 90 μm thick PBI membranes are successfully synthesized and doped with phosphoric acid. To achieve a good compromise between the proton conductivity and durability, the properties of PA-doped PBI membranes are experimentally evaluated to clarify the effect of the acid doping time and membrane thickness on cell performance. The results indicate that the higher the acid doping level, the worse the dimensional stability of the membrane. Also the thinner the PBI membrane, the smaller the membrane resistance to ions motion, while the poorer the stability. Upon reaction at 170 °C, this cell can boast a power density from 3.0 to 8.0 W m?2, which results in a thermoelectric conversion efficiency of 5.97–14.32%. This study potentially boosts the practical application of thermal-to-electrical conversion technology.  相似文献   

20.
Integrating PEM fuel cells effectively with liquid hydrocarbon reforming requires careful system analysis to assess trade-offs associated with H2 production, purification, and overall water balance. To this end, a model of a PEM fuel cell system integrated with an autothermal reformer for liquid hydrocarbon fuels (modeled as C12H23) and with H2 purification in a water–gas-shift/membrane reactor is developed to do iterative calculations for mass, species, and energy balances at a component and system level. The model evaluates system efficiency with parasitic loads (from compressors, pumps, and cooling fans), system water balance, and component operating temperatures/pressures. Model results for a 5-kW fuel cell generator show that with state-of-the-art PEM fuel cell polarization curves, thermal efficiencies >30% can be achieved when power densities are low enough for operating voltages >0.72 V per cell. Efficiency can be increased by operating the reformer at steam-to-carbon ratios as high as constraints related to stable reactor temperatures allow. Decreasing ambient temperature improves system water balance and increases efficiency through parasitic load reduction. The baseline configuration studied herein sustained water balance for ambient temperatures ≤35 °C at full power and ≤44 °C at half power with efficiencies approaching ∼27 and ∼30%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号