共查询到19条相似文献,搜索用时 125 毫秒
1.
基于模糊神经网络的导弹故障诊断专家系统 总被引:2,自引:1,他引:1
为了实现对导弹测发控系统的故障诊断,研究了模糊神经网络理论与算法,以及和专家系统的结合方式;综合神经网络、专家系统和模糊逻辑的各自优点和特点,提出了构建基于模糊神经网络的故障诊断专家系统的基本原则,并给出了一种构建方法;通过将传统的专家系统技术与模糊神经网络技术相融合,文中构造了某型导弹测发控系统智能故障诊断系统,验证了方案的可行性,为类似系统的进一步实现进行了有益的探索。 相似文献
2.
基于神经网络的模糊预测控制及其应用 总被引:2,自引:0,他引:2
应用模糊控制的逻辑推理性能,借助神经网络的学习能力,提出了一种模糊神经网络预测控制模型。利用该模型对发酵过程的预测控制,实验曲线表明,可获得较高的预测精度和较好的控制效果。 相似文献
3.
4.
本文使用有序神经网络和改进的模糊控制器构成了一种新型的神经模糊预测控制方法,有序网络学习速度快,所需神经数目少,用事先训练好的有序网络代替传统的预测模型,以期增强输出预测的准确性;同时,用一种改进的模糊控制器原有的PID控制器,增强系统的鲁棒性。仿真结果表明,所提出的神经模糊预测控制方法可以获得理想的控制效果。 相似文献
5.
基于遗传算法的模糊神经网络股市建模与预测 总被引:12,自引:1,他引:12
提出一种基于模糊神经网络的股票市场建模与预测方法,并采用遗传算法训练网络权值及模糊子集的划分,对于上证指数及个股的建模与预测结果表明,该方法具有很强的学习与泛化能力,在处理诸如股票市场上这种具有一定程度不确定性的非互性的建模与预测方面有很发的价值。 相似文献
6.
7.
论文考虑了一种五层结构的正则化模糊神经网络模型,针对网络结构的优化问题给出了该网络模型规则层节点的选取方法和相应的反传播学习规则。同时利用该网络模型对油井压裂的效果进行了预测,起到了辅助决策的作用。实际资料处理结果表明此网络模型对油井压裂效果预测问题具有良好的实用性。 相似文献
8.
基于RBF模糊神经网络模型的广义预测控制 总被引:1,自引:0,他引:1
广义预测控制对线性系统具有较好的控制效果,为将它应用到非线性系统,本文提出一种将RBF模糊神经网络与广义预测控制相结合的方法,仿真证明控制有效。 相似文献
9.
本文主要研究网络权值和阈值为模糊数的前馈神经网络,给出了一种利用线性规划确定这种网络权值和阈值的算法,并结合实际算例验证了该算法的优越性。 相似文献
10.
实时交通流预测是智能运输系统研究的重要内容之一.本文将小波分析的相关知识与模糊神经网络相结合,给出了基于小波模糊神经网络的交通流预测模型,采用小波函数作为模糊隶属度函数,用神经网络来实现模糊推理,完成对下一个周期性交通流的估计.同时,用遗传算法来优化整个网络,实测数据验证这种方法预测精度高,收敛过程平稳,适应性强. 相似文献
11.
12.
文章介绍了一种基于进化式模糊神经网络时间预测系统,它是一种快速自适应的局部学习模型;进化式模糊神经网络是一个特殊类型的神经网络,它能通过进化其结构和参数来容纳新的数据。文章重点介绍了网络结构、学习方法及创建、修剪、聚合规则节点的算法;实验结果表明:模糊隶属函数的个数,规则的修剪和聚合等训练参数,与网络的行为和预测结果有很重要的关系。 相似文献
13.
预测燃气轮机未来的功率变化趋势对故障预测非常重要。针对燃气轮机故障预测的问题,提出了一种基于Elman神经网络的功率预测方法。以某电厂燃气轮机的实际数据为例,选取与功率变化最相关的属性。通过对比实验,采取合适的预处理方法,确定神经网络模型的输入,设置合适的隐含层神经元个数,从而建立了基于Elman神经网络的燃气轮机功率预测模型。最后通过与反向传播(back propagation,BP)网络、径向基函数(radial basis function,RBF)网络进行比较,验证了该方法的有效性。 相似文献
14.
15.
将BP神经网络用于电力负荷预测。给出了具体的数据处理方法、神经网络构造及预测结果评价方法。在南京市夏季电力负荷统计数据集上面的实验结果表明,BP神经网络能够对电力负荷进行较好地预测。 相似文献
16.
针对葡萄酒品质预测模型难以建立的问题,提出一种基于模糊递归小波神经网络的葡萄酒品质预测模型。利用葡萄酒物理化学指标和品酒师打分作为模型的输入输出,采用梯度下降算法在线学习隶属函数层中心、宽度和小波函数平移因子、伸缩因子、自反馈权重因子以及输出层权值。仿真实验时,首先利用Mackey-Glass混沌时间序列进行了性能测试,然后利用UCI数据集葡萄酒品质数据对所建立的品质预测模型进行了验证。结果显示,与多层感知器、径向基函数神经网络等传统前馈神经网络相比,构建的模糊递归小波神经网络品质预测模型具有更高的预测精度,更加适合于葡萄酒的品质预测。 相似文献
17.
程山英 《计算机测量与控制》2017,25(8):155-158
为满足交通控制和诱导系统的实时性需求,减少交通拥挤状况,降低交通事故突发频率,需要对短时交通流进行预测;当前的短时交通流预测方法是采用K-近邻的非参数回归对其进行预测,预测过程中没有将预测模型中关键因素对交通流的影响进行详细的说明,导致预测结果不准确,存在短时交通流预测误差较大的问题;为此,提出一种基于模糊神经网络的短时交通流预测方法;该方法首先以历史短时交通流数据样本序列为基础,将提取的关联维数作为短时交通流的混沌特征量,然后以该特征量为依据,对短时交通流数据进行聚类,使相同的短时交通流聚合类样本比不同的交通流聚合类样本更为贴近,采用高斯过程回归对短时交通流预测模型进行建设,建设过程中利用差分方法对短时交通流预测序列进行平稳化操作之后,对短时交通流预测模型进行训练,将GPR模型引入至短时交通流预测过程中,得到交通流预测方差估计值,并确定交通流预测值置信区间,由此实现短时交通流的预测;由此实现短时交通流的预测;实验结果证明,所提方法可以准确地预测交通运输系统的实时状况,为车辆行驶的最佳路线进行了有效引导,减少了自然影响方面和人为因素对短时交通流预测结果的干扰,为交通部门对交通路况的控制管理提供了依据。 相似文献
18.
为了提高光伏发电功率的预测精度,提出一种改进BP神经网络的光伏发电功率预测模型.首先采用包括室外温度、光照辐射量、风速等作为输入层节点,交流发电功率作为输出节点,引入RMSE作为衡量最优模型指标,确定了隐含层节点数,然后采用BP神经网络对其进行学习,并采用布谷鸟搜索算法对BP神经网络进行优化,最后采用仿真实验对其有效性进行测试.结果表明,改进神经网络提高了光伏发电功率预测精度,具有一定的推广价值. 相似文献