首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用内部高温残余废气加热新鲜充量是实现均质压燃(HCCI)的一种有效方式。设计了几种具有小持续角的特殊进、排气凸轮轴,以满足高内部残余废气率。在Ricardo Hydra 140单缸汽油机上,分别采用不同持续角的凸轮轴研究了进、排气门定时和升程等参数对汽油机HCCI燃烧的影响。试验结果表明,排气门定时对残余废气率和HCCI燃烧有着更强的控制作用。选择合适的气门升程可以拓展HCCI运行范围,升程大的凸轮轴将HCCI运行范围向高速大负荷方向拓展,而升程小的凸轮轴则有利于获得更低的HCCI运行负荷和转速。  相似文献   

2.
乙醇燃料HCCI发动机燃烧特性研究   总被引:1,自引:0,他引:1  
应用调整进排气门相位控制缸内残余废气率策略,在Ricardo Hydra四冲程进气道喷射单缸试验机上实现了无水乙醇燃料的均质压燃,获得了运行工况范围,并分析研究了空燃比、转速和气门相位对乙醇燃料均质压燃的燃烧特性。结果表明:乙醇燃料的均质压燃的可运行范围仍然受到爆震、换气过程及失火的限制,但在高速及稀燃区域得到拓展;其着火时刻及燃烧持续期依赖于气门定时、空燃比及转速。  相似文献   

3.
基于可变气门定时策略的HCCI汽油机试验研究   总被引:1,自引:1,他引:0  
在电控气口喷射四冲程单缸试验机上,利用特殊设计的小包角配气凸轮,通过负气门重叠角实现了由内部残余废气控制的汽油HCCI燃烧,详细研究了气门定时参数对HCCI燃烧的影响.结果表明,就进排气门定时比较而言,排气门关闭时刻对内部EGR率和负荷的影响更大,而进气门开启时刻对HCCI燃烧的影响相对较小.在进排气门相位对称条件下,随着气门重叠负角的减小,最大压力升高率增加,着火时刻提前,负荷也增大.随着转速的增加,内部EGR率增加,排气温度升高,着火时刻也提前.通过调整气门定时,在不需要进气加热的条件下,可在转速880~4 000 r/min,负荷0.25~0.75 MPa(pIMEP)的范围实现HCCI燃烧.  相似文献   

4.
研究了缸内直喷式汽油机废气滞留条件下,负气门重叠角、点火提前角、压缩比及分层混合气对废气滞留燃烧的影响。研究结果表明:GDI发动机在部分负荷时利用废气滞留可减小泵气损失,但使燃烧持续期增长、循环波动增大;负气门重叠角增大导致循环波动增大;适当地提前点火时刻有助于降低循环波动;废气滞留燃烧采用高压缩比会产生点燃触发压燃的组合燃烧方式,可缩短燃烧持续期但使循环波动增大;利用2次喷射策略形成分层混合气有助于降低废气滞留燃烧时的循环波动,缩短滞燃期和燃烧持续期,从而提高循环热效率,第2次喷射比例和时刻对性能产生重要影响。  相似文献   

5.
小升程凸轮轴发动机HCCI燃烧特性的研究   总被引:1,自引:0,他引:1  
何邦全  谢辉  张岩  秦静  赵华 《内燃机学报》2006,24(5):428-433
为了在发动机的低速低负荷区实现均质充量压缩着火(HCCI)燃烧,设计了气门升程小和气门开启持续期短的进、排气门凸轮轴,并将其安装在Ricardo Hydra单缸汽油机上。试验研究了发动机使用理论空燃比混合气时的燃烧情况,结果表明,使用负气门重叠角可以在低速低负荷区实现HCCI燃烧。在HCCI燃烧方式下运行时的平均指示压力(PIMEP)依赖于气门定时和发动机转速。排气门关闭越早,缸内的残余废气量增加,每循环进气量减少,燃烧持续期变长,PIMEP减小,然而泵气损失减小;进气相位对PIMEP的影响小于排气相位的影响;高的发动机转速对燃烧过程的影响类似于排气门早关.  相似文献   

6.
在一台装有电液可变气门的单缸柴油机上,基于喷油正时、内部废气再循环(EGR)和喷油压力的协同控制,对小负荷工况下汽油燃料直喷压燃模式的燃烧特性和排放特性进行了试验研究,并对实现汽油燃料高效清洁稳定低温压燃的控制区间进行了探索研究.内部EGR通过排气门两次开启实现,发动机转速和循环喷油量分别固定为1,500,r/min和28,mg.研究结果表明,基于燃油早喷、较低内部EGR率和较高喷油压力的协同控制可以使汽油在平均指示压力约为0.46,MPa工况下实现高效清洁燃烧.  相似文献   

7.
石磊  邓康耀  崔毅  何方正 《柴油机》2004,(Z1):113-116
采用在进气上止点附近进行燃油喷射,通过缸内高温残余废气促进燃油蒸发混合的方法,在单缸135柴油机上实现了柴油燃料的均质压燃(HCCI).对HCCI燃烧的燃烧特性和排放特性进行了测试分析,根据实测示功图计算了HCCI燃烧缸内温度,分析了其对NOx排放的影响,当缸内温度超过1700K时,将使HCCI燃烧的NOx排放显著增长.  相似文献   

8.
ETCI(Exhaust Top dead center Injection Compression Ignition)燃烧利用负气门重叠产生的高温残余废气对高压喷入的燃油进行加热促进蒸发,实现了HCCI燃烧.基于ETCI的燃烧模式,研究了排气正时以及增压压力等参数对燃烧过程的影响.试验结果表明,排气正时对燃烧特性有较大的影响,利用排气正时控制残余废气率和IVC时刻缸内平均温度可间接实现燃烧相位的控制;在自然排气状态下,进气压力的升高增大了过量空气系数、可小幅度降低IVC时刻缸内残余废气与新鲜空气的混合气的平均温度,在一定范围内实现燃烧相位的控制.通过不同排气正时下合理的增压压力配合可实现燃烧相位的有效控制并降低排放.  相似文献   

9.
某四缸自然吸气汽油发动机怠速时燃烧不稳定,经热力学性能仿真计算发现怠速时气门重叠角偏大,导致残余废气率较高,从而引起燃烧不稳定及循环变动大。可通过调整进气凸轮轴安装相位或增大气门间隙来推迟进气门开启时刻,减小气门重叠角。本文对加大气门间隙方案做换气过程分析计算,加大气门间隙,气门重叠角减小。在低速时,小的气门重叠角有利于减小废气倒流,提高进气量;但在高速时进气惯性大,由于加大气门间隙,减小了进气迟闭角,造成高速时进气量减小。试验结果验证仿真分析的正确性。试验结果表明,减小气门重叠角可显著改善怠速工况的循环变动和排放,中低速工况的扭矩也有所提升,但高速段功率稍有下降。  相似文献   

10.
4VVAS可控自燃汽油机燃烧过程的试验研究   总被引:1,自引:0,他引:1  
秦静  谢辉  张岩  陈韬  何邦全  赵华 《内燃机学报》2007,25(4):316-321
在一台配备进、排气门升程及定时同时可控的四变量气门执行机构(4-Variable Valve Actuating System,4VVAS)的进气道喷射汽油机上通过保留部分热废气的方法,实现了汽油机均质可控压燃(CAI)燃烧.通过试验考察了不同气门升程下的CAI燃烧过程,从而探讨气门参数对废气再压缩汽油机CAI燃烧的控制作用.研究表明,不同气门升程下的发动机运行负荷范围不同,适当减少有效压缩比可以减少爆震倾向,增加低转速下大负荷范围,而通过增加气门升程可以拓展高转速下CAI汽油机大负荷运行范围.发动机负荷大小主要依靠排气门参数来调节,而进气门参数能够控制进气回流和有效压缩比,从而对残余废气率及汽油机CAI燃烧过程具有对称性控制作用.  相似文献   

11.
Homogenous charge compression ignition (HCCI) engines feature high thermal efficiency and ultralow emissions compared to gasoline engines. However, unlike SI engines, HCCI combustion does not have a direct way to trigger the in-cylinder combustion. Therefore, gasoline HCCI combustion is facing challenges in the control of ignition and, combustion, and operational range extension. In this paper, an active fuel design concept was proposed to explore a potential pathway to optimize the HCCI engine combustion and broaden its operational range. The active fuel design concept was realized by real time control of dual-fuel (gasoline and n-heptane) port injection, with exhaust gas recirculation (EGR) rate and intake temperature adjusted. It was found that the cylinderto- cylinder variation in HCCI combustion could be effectively reduced by the optimization in fuel injection proportion, and that the rapid transition process from SI to HCCI could be realized. The active fuel design technology could significantly increase the adaptability of HCCI combustion to increased EGR rate and reduced intake temperature. Active fuel design was shown to broaden the operational HCCI load to 9.3 bar indicated mean effective pressure (IMEP). HCCI operation was used by up to 70% of the SI mode load while reducing fuel consumption and nitrogen oxides emissions. Therefore, the active fuel design technology could manage the right fuel for clean engine combustion, and provide a potential pathway for engine fuel diversification and future engine concept.  相似文献   

12.
Due to concerns regarding the greenhouse effect and limitations on carbon dioxide emissions, the possibility of a next-generation combustion mode for internal combustion engines that can simultaneously reduce exhaust emissions and substantially improve thermal efficiency has drawn increasing attention. The most prominent characteristic of new combustion modes, such as Homogenous-Charge Compression-Ignition (HCCI), Stratified-Charge Compression-Ignition (SCCI), and Low-Temperature Combustion (LTC), is the requirement of creating a homogenous mixture or controllable stratified mixture prior to ignition. To this end, a lean fuel/air mixture and/or a controllable high level of exhaust gas recirculation (EGR) are employed to prolong the timescale of the ignition chemistry and port fuel injection or early in-cylinder injection is used to lengthen the mixing period. The mixture then undergoes controlled self-ignition near the top dead center (TDC) position due to the compression effect of the piston’s upward movement. It is worth noting that the entire combustion process lacks a direct method for the control of ignition timing and combustion rate, which are instead controlled primarily by chemical kinetics and, to a lesser extent, by turbulence and mixing. Because of the significant impacts of fuel physical–chemical properties on the ignition and combustion process, fuel design and management has become the most common approach for the control of ignition timing and combustion rate in such advanced combustion modes.This paper summarizes the concepts and methods of fuel design and management and provides an overview of the effects of these strategies on ignition, combustion, and emissions for HCCI, LTC, and SCCI engines, respectively. From part 2 to part 4, the paper focuses on the effect of fuel design on HCCI combustion. A fuel index suitable for describing ignition characteristic under HCCI operating conditions is first introduced. Next, the proposed fuel design concept is described, including principles and main methodologies. Strategies based on the fuel design concept (including fuel additives, fuel blending, and dual-fuel technology) are discussed for primary reference fuels (PRF), alternative fuels, and practical gasoline and diesel fuels. Additionally, the effects of real-time fuel design on HCCI combustion fueled with PRFs and dimethyl ether/liquefied petroleum gas (DME–LPG) are evaluated. Diesel HCCI combustion has suffered from difficulties in homogenous mixture formation and an excessively high combustion rate. Therefore, LTC, which concentrates on local combustion temperature and a balance of mixture formation timescale and ignition timescale, has been proposed by many researchers. In Part 5, this paper provides an overview of the major points and research progress of LTC, with a preliminary discussion of the fundamental importance of fuel properties and fuel design strategy on the LTC process and emissions. Due to the stratification strategy has the capable of extending the HCCI operation range to higher loads, SCCI combustion, which incorporates HCCI combustion into a traditional combustion mode, has the potential to be used in commercial engines. Thus, this paper discusses the principles and control strategies of fuel design and management and also summarizes recent progress and future trends. The effect of fuel design and management on SCCI combustion is assessed for high cetane number fuels and high octane number fuels as well as the in SCCI combustion of gasoline–diesel dual-fuel and blends.  相似文献   

13.
Homogeneous Charge Compression Ignition (HCCI) combustion is a combustion concept which offers simultaneous reductions in both NOx and soot emissions from internal combustion engines. In light of increasingly stringent diesel emissions limits, research efforts have been invested into HCCI combustion as an alternative to conventional diesel combustion. This paper reviews the implementation of HCCI combustion in direct injection diesel engines using early, multiple and late injection strategies. Governing factors in HCCI operations such as injector characteristics, injection pressure, piston bowl geometry, compression ratio, intake charge temperature, exhaust gas recirculation (EGR) and supercharging or turbocharging are discussed in this review. The effects of design and operating parameters on HCCI diesel emissions, particularly NOx and soot, are also investigated. For each of these parameters, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.  相似文献   

14.
废气再循环和进气加热是实现汽油机HCCI燃烧的两种不同方式,其对HCCI燃烧性能的影响也不同,为此,在同一台汽油机上分别采用废气再循环和进气加热实现HCCI燃烧,并分析了其在HCCI燃烧性能上存在差异的机理.试验结果表明,相对于进气加热,废气再循环的工质比热容高,但由于稀释比较小,使得其工质总热容反而低,从而缸内燃烧温度高.废气再循环HCCI燃烧的未燃HC排放比进气加热的排放值低41%~59%;NOx排放是后者的2~20倍;而CO排放与负荷有关;其燃烧效率比进气加热HCCI的值高0.8%~14%.然而,由于进气加热的PMEP低,缸内工质比热比大,传热损失小,最终使得进气加热HCCI燃烧的ISFC比废气再循环HCCI燃烧的值低6.6%~16.4%.  相似文献   

15.
DME/LPG燃料比例实时优化的HCCI燃烧控制新方法   总被引:2,自引:0,他引:2  
根据燃料设计的思想,提出了混合燃料比例实时优化的HCCI燃烧控制新方法。在一台2135柴油机上,通过燃料成分设计(DME/LPG混合燃料)、混合气成分设计(进气添加二氧化碳)、发动机参数调整(改变压缩比)等多种模式对二甲醚HCCI燃烧进行了研究和比较。试验结果表明,在不同工况下实时进行DME/LPG比例优化,通过改变燃料的理化特性和可燃混合气的成分,实现了HCCI着火与燃烧的有效控制,能够显著拓展二甲醚HCCI燃烧的运行负荷范围,并且各个工况下热效率最高、HC和CO排放最低。  相似文献   

16.
火花点火对缸内直喷汽油机HCCI燃烧的影响   总被引:12,自引:0,他引:12  
实现汽油机均质混合气压燃(HCCI)的难点是着火控制。在缸内直喷汽油机上实现了HCCI燃烧,研究了火花点火对HCCI燃烧特性的影响。结果表明,HCCI燃烧方式较火花点火(SI)火焰传播燃烧方式放热速率快,热效率高,NOx大幅度降低。在HCCI临界状态时,火花点火有助于提高燃烧稳定性,抑制失火和爆燃,降低循环波动;当火花点火时缸内温度远超过临界着火温度时,火花点火对HCCI燃烧影响不大。火花点火在SI/HCCI燃烧模式切换工况时,能提高瞬态过渡平顺性。  相似文献   

17.
对有废气再循环(EGR)的情况下单一二甲基醚(DME)、DME/甲醇(Methanol)和DME/天然气(CNG)双燃料的均质压燃(HCCI)燃烧进行了实验研究.研究结果表明,单一DME的HCCI只能在小负荷下实现.采用DME/甲醇双燃料后,HCCI的负荷范围达到了原柴油机中高负荷水平.EGR能扩大双燃料HCCI的可控燃烧范围,但对扩展双燃料HCCI燃烧的负荷范围作用不大.分层燃烧技术有扩大双燃料发动机的负荷范围到大负荷的潜力.DME/甲醇双燃料HCCI的指示热效率要优于DME/CNG.在低负荷工况,采用单一DME加EGR的HCCI燃烧能获得更好的经济性指标.  相似文献   

18.
均质压燃式(HCCI)燃烧的研究   总被引:10,自引:0,他引:10  
均质压燃式(HCCI)燃烧方式是目前内燃机燃烧领域的研究热点。HCCI燃烧是以预混合燃烧和低温反应为特征的燃烧方式。采用HCCI燃烧方式可以同时有效降低柴油机的NOX和碳烟排放,并提高柴油机的循环热效率。HCCI发动机通常工作在高空燃比和较低的压缩比条件下,工作范围较小,高负荷时功率输出不足。“双模式”HCCI发动机是解决上述问题的有效途径,并成为近期HCCI发动机研究中的热点。  相似文献   

19.
HCCI combustion has been drawing the considerable attention due to high efficiency and lower nitrogen oxide (NOx) and particulate matter (PM) emissions. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. Massive research throughout the world has led to great progress in the control of HCCI combustion. The first thing paid attention to is that a great deal of fundamental theoretical research has been carried out. First, numerical simulation has become a good observation and a powerful tool to investigate HCCI and to develop control strategies for HCCI because of its greater flexibility and lower cost compared with engine experiments. Five types of models applied to HCCI engine modelling are discussed in the present paper. Second, HCCI can be applied to a variety of fuel types. Combustion phasing and operation range can be controlled by the modification of fuel characteristics. Third, it has been realized that advanced control strategies of fuel/air mixture are more important than simple homogeneous charge in the process of the controlling of HCCI combustion processes. The stratification strategy has the potential to extend the HCCI operation range to higher loads, and low temperature combustion (LTC) diluted by exhaust gas recirculation (EGR) has the potential to extend the operation range to high loads; even to full loads, for diesel engines. Fourth, optical diagnostics has been applied widely to reveal in-cylinder combustion processes. In addition, the key to diesel-fuelled HCCI combustion control is mixture preparation, while EGR is the main path to achieve gasoline-fuelled HCCI combustion. Specific strategies for diesel-fuelled, gasoline-fuelled and other alternative fuelled HCCI combustion are also discussed in the present paper.  相似文献   

20.
均质压燃(HCCI)燃烧过程控制方式的研究   总被引:1,自引:0,他引:1  
均质压燃(HCCI)燃烧方式是目前内燃机燃烧领域的研究焦点。因HCCI发动机的燃烧过程主要由可燃混合气的化学动力学所控制,故很难在全负荷范围内控制它的着火时刻和燃烧放热率。因此,HCCI燃烧过程的控制成为HCCI研究热点。本文根据一些控制HCCI发动机燃烧过程的研究结果对其进行阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号