首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
薛燕  王振国 《表面技术》2017,46(7):91-96
目的提高镁合金的耐蚀性和耐磨性。方法以AZ91D镁合金为基体,采用SiC颗粒质量浓度为3 g/L的Ni-P化学镀溶液,在其表面沉积不同时间,制备Ni-P-SiC复合镀层。通过扫描电子显微镜(SEM)、显微硬度测试、粗糙度仪、电化学腐蚀和磨损等试验来分析和评价Ni-P-SiC复合镀层的厚度、表面粗糙度、显微硬度、耐腐蚀性能和耐磨性能。结果 Ni-P-SiC复合镀层的厚度和表面粗糙度随沉积时间增加而增加,沉积时间为150 min时,镀层厚度可达53μm,表面粗糙度为2.5μm。沉积时间为120 min时,镀层的显微硬度最高,为641HV,此时复合镀层的耐蚀性和耐磨性最好,自腐蚀电位高达-0.73 V,腐蚀电流密度为0.78μA/cm~2,磨损体积最小,为1.04×10~(-3)mm~3。与AZ91D镁合金基体相比,沉积复合镀层后的样品更耐蚀,说明复合镀层有效改善了镁合金基体的耐蚀性。结论沉积时间对Ni-P-SiC复合镀层的性能有一定影响,在沉积时间为120 min时获得的复合镀层具有较好的耐蚀性和耐磨性。  相似文献   

2.
目的提高金属材料在高温、高压、高氯离子腐蚀环境下的耐蚀性。方法采用化学镀法在L245表面制备Ni-W-P镀层和Ni-W-P-nSiO_2复合镀层,利用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度仪及贴滤纸法对镀层结构、形貌、硬度及孔隙率进行表征。采用高温高压腐釜模拟现场工况进行72 h均匀腐蚀试验,设置温度为150℃、压力为35 MPa,利用失重法计算腐蚀速率。结果 Ni-W-P镀层和Ni-W-P-nSiO_2复合镀层均为非晶态结构,扫描电镜形貌观察表明三种镀层表面均为胞状组织,吸附在基体表面的纳米二氧化硅作为形核核心,使Ni-W-P-nSiO_2复合镀层的组织更细小。添加纳米二氧化硅的复合镀层的孔隙率从添加前的1.24减小到0.83。磁力搅拌和超声辅助Ni-W-P-nSiO_2复合镀层的硬度分别为491.6HV和421.7HV,较Ni-W-P镀层的384.5HV分别增加了107.1和37.2HV;磁力搅拌及超声辅助Ni-W-P-nSiO_2复合镀层的腐蚀速率分别为0.0552 mm/a和0.0371 mm/a,是Ni-W-P镀层腐蚀速率(0.1075 mm/a)的1/2和1/3。腐蚀后表面成分分析表明,超声辅助Ni-W-P-nSiO_2复合镀层的表面腐蚀产物为Ni_3S_2,能有效保护基体。结论超声辅助Ni-W-P-nSiO_2复合镀层的耐蚀性相比Ni-W-P镀层显著提高。  相似文献   

3.
为了进一步提高Cu-Sn镀层的硬度和耐磨性,在保持镀层自润滑性能的基础上,采用纳米溶胶技术与复合电镀技术相结合的方法,将纳米TiO_2溶胶加入到电解液中,制备了TiO_2纳米粒子强化的Cu-Sn-TiO_2复合镀层。通过对微观组织、成分、显微硬度和摩擦学性能的分析表明,适量纳米TiO_2溶胶的加入,细化了Cu-Sn镀层组织,提高了镀层的致密性,其硬度和耐磨性均较Cu-Sn镀层显著提高。  相似文献   

4.
薛燕  王振国 《表面技术》2017,46(3):79-83
目的提高镁合金表面Ni-P-SiC复合镀层的耐腐蚀性能和耐磨性能。方法采用加入SiC微粒的Ni-P化学镀溶液,在AZ91D镁合金表面制备Ni-P-SiC复合镀层,并在不同温度下进行热处理,通过X射线衍射(XRD)、显微硬度测试、电化学腐蚀测试和摩擦磨损实验等方法分析和评价镀层的组织构成、显微硬度、耐腐蚀性能和耐磨性能。结果 Ni-P-SiC复合镀层经320℃热处理后,组织结构由非晶向晶体转变,并伴随有Ni3P相的析出。此温度下热处理的Ni-P-SiC复合镀层:显微硬度最高,可达1120HV,为未热处理时显微硬度(620HV)的1.81倍;自腐蚀电位为–0.697 V,较未热处理样品的(–0.727 V)有所提高;腐蚀电流密度基本最小,为0.984μA/cm~(–2);磨损体积最小,为0.324×10~(–3) mm~3。340℃热处理的复合镀层则磨损体积最大,为1.43×10~(–3) mm~3。结论在AZ91D镁合金表面制备的Ni-P-SiC复合镀层经过320℃热处理保温1 h后,复合镀层的硬度、耐腐蚀性能和耐磨性能均有所提高。  相似文献   

5.
对Zr-8Al合金进行了化学复合镀Ni-P-ZrO_2处理,并研究了不同ZrO_2粒子加入量制备的复合镀层的显微结构、显微硬度、耐磨性和抗蚀性。结果表明,与单纯化学镀Ni-P镀层相比,Ni-P-ZrO_2复合镀层的显微硬度值显著提高,ZrO_2的添加量为4 g/L获得复合镀层显微硬度最高,耐磨性好;在3.5%(质量分数)NaCl溶液中耐蚀性虽有所下降,但腐蚀后镀层完整,仍具有较好的抗蚀性。Zr-8Al合金表面采用4 g/L ZrO_2粒子制备的Ni-P-ZrO_2复合镀层兼具很好的耐磨性和较好的耐蚀性,适用于既要耐磨又要抗蚀的空间活动构件。  相似文献   

6.
以AZ91HP镁合金为研究对象,以纳米氧化硅为第二相粒子,通过纳米复合电沉积法制备AZ91HP镁合金Ni-SiO2纳米复合镀层。利用扫描电镜观察纳米复合镀层的显微形貌与微观结构,利用显微硬度计测定纳米复合镀层显微硬度,利用M200摩擦磨损试验机测试纳米复合镀层的耐磨性能。结果表明:在AZ91HP镁合金表面获得了结晶均匀、结构致密的Ni-SiO2纳米复合镀层;纳米复合镀层剖面形貌显示纳米复合镀层与镁合金基体结合良好;镀液中纳米颗粒含量为10g/L时,AZ91HP镁合金表面电沉积Ni-SiO2纳米复合镀层的显微硬度最高,最高达HV367;摩擦磨损试验表明纳米复合镀层与镀镍层、镁合金基体相比,耐磨性明显提高,这是由于纳米颗粒的细晶强化和弥散强化所致;纳米复合镀层的磨损机制主要是磨粒磨损,镁合金基体磨损机制为粘着磨损,镀镍层磨损机制为剥层磨损。  相似文献   

7.
李智  刘崇宇  葛毓立  宋万彤  胡德枫 《表面技术》2023,52(10):394-402, 421
目的 提高纳米金属陶瓷复合镀层硬度、耐磨性,以及耐蚀性。方法 在镀液中添加了氧化石墨烯(GO),在合金的基体上制备了Ni-TiN-GO的复合镀层,并对镀层组织结构、成分、显微硬度、耐磨性和耐蚀性进行表征及分析,探究GO的添加量对其组织性能的影响,确定最适宜的GO添加量。结果 最适宜GO含量为0.3 g/L,所得镀层表面平整致密,与基体结合良好,厚度为8.64 μm。晶面表现为双择优取向,晶粒尺寸最小,显微硬度最大,分别为22.8 nm和1 529.1HV。摩擦磨损测试表明摩擦因数为0.8,主要以磨粒磨损为主,具有良好耐磨性能。Ni-TiN-0.3g/LGO复合镀层自腐蚀电流密度较基体和Ni-TiN镀层下降1个数量级,在经过96 h的盐雾试验后,镀层未见开裂,只附着少量腐蚀产物,表现出良好的耐蚀性。结论 当GO的添加量为0.3 g/L时镀层表面最为致密,缺陷减少,并且通过其较大的比表面积可阻碍腐蚀离子通过,进而提高镀层耐蚀性。GO通过在镀液中与Ni2+结合形成复合物共沉积到孔隙缺陷处,同时GO弥散分布于镀层,提供了大量的形核位点,镀层晶粒尺寸下降,因此镀层硬度提高,并且由于GO具有一定自润滑能力,镀层的耐磨性提高。  相似文献   

8.
采用化学镀的方法,将含轻稀土Pr的硫酸镨和含重稀土Y的硫酸钇加入Ni-P合金掺杂纳米TiO_2酸性复合化学镀中以提高碳钢表面的整体性能。通过计算、化学及仪器分析法,借助紫外分光光度仪、显微硬度仪、扫描电镜、X射线荧光衍射、能量弥散X射线谱、电化学工作站进行分析,研究了稀土对沉积速率、纳米TiO_2在镀液中的分散性和复合镀层性能的影响。结果表明:添加一定质量浓度的稀土元素,能够提高沉积速率及纳米TiO_2在复合镀液及镀层的分散性,增加复合镀层的显微硬度和耐蚀性,并且使得复合镀层中P和Ti含量略有增加且仍为非晶态结构,细化了晶粒。添加重稀土Y比添加轻稀土Pr性能更优,最优添加稀土Y的质量浓度为10 mg/L。  相似文献   

9.
采用化学镀的方法,将含轻稀土Pr的硫酸镨和含重稀土Y的硫酸钇加入Ni-P合金掺杂纳米TiO_2酸性复合化学镀中以提高碳钢表面的整体性能。通过计算、化学及仪器分析法,借助紫外分光光度仪、显微硬度仪、扫描电镜、X射线荧光衍射、能量弥散X射线谱、电化学工作站进行分析,研究了稀土对沉积速率、纳米TiO_2在镀液中的分散性和复合镀层性能的影响。结果表明:添加一定质量浓度的稀土元素,能够提高沉积速率及纳米TiO_2在复合镀液及镀层的分散性,增加复合镀层的显微硬度和耐蚀性,并且使得复合镀层中P和Ti含量略有增加且仍为非晶态结构,细化了晶粒。添加重稀土Y比添加轻稀土Pr性能更优,最优添加稀土Y的质量浓度为10 mg/L。  相似文献   

10.
在不同浓度的LaCl_3镀液中,采用化学镀方法在镁合金基体表面制备Ni-P镀层。利用扫描电镜观察了Ni-P镀层的表面形貌,通过全腐蚀浸泡实验测出镀层的腐蚀速率,借助电化学测试了Ni-P镀层的腐蚀过电位及塔菲尔(Tafel)极化曲线。结果表明:Ni-P镀层表面形貌为胞状组织。随着镀液中LaCl_3含量的增加,Ni-P镀层的耐蚀性提高,当LaCl_3添加量为0.30 g/L时,Ni-P镀层的腐蚀速率最低,过腐蚀电位最正,容抗弧半径最大,耐蚀性最好;当LaCl_3添加量为0.35 g/L时,反而会降低Ni-P镀层的耐蚀性。  相似文献   

11.
毕晓勤  韦亚琳 《表面技术》2016,45(12):68-72
目的提高镁合金化学镀层的力学性能。方法选择出一组优良镁合金化学镀Ni-P工艺参数,在Ni-P镀液中加入不同的纳米金刚石浓度。通过观察所得镀层的微观组织形貌,对比镀层形貌组织;通过对复合镀层进行热处理,分析镀层组织结构的变化;通过测定金刚石加入前后镀层的摩擦系数,检测了复合镀层的耐磨损性能;通过查看镀层腐蚀斑点数目,检测复合镀层的耐腐蚀性能。结果随着纳米金刚石浓度的增加,复合镀层的形貌越好,当纳米金刚石加入量达到6 g/L时,所得复合镀层的微观形貌均匀、致密。热处理使镀层结构由非晶态变为结晶态,显微硬度明显提高。金刚石的加入致使镀层的摩擦系数降低且稳定,相比化学镀Ni-P镀层,加入金刚石后的复合镀层的腐蚀斑点数较少。结论纳米金刚石的加入大大提高了镀层的力学性能。  相似文献   

12.
为了改善316L不锈钢在高温酸性溶液中的耐蚀性,采用化学镀技术在316L不锈钢表面沉积高铜高磷Ni-Cu-P镀层。采用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对其结构进行分析,利用极化曲线、阻抗谱(EIS)及浸泡腐蚀试验对其在高温酸性溶液中的耐蚀性进行研究。结果表明,Ni-Cu-P镀层由铜含量分别为19.98%和39.17%(质量分数)两种类型的胞状组织组成;在高温酸性溶液中,这种新型Ni-Cu-P镀层可显著改善316L不锈钢的耐蚀性;镀态镀层的耐蚀性优于热处理态的;镀态镀层和经673K热处理镀层的腐蚀机制是选择性腐蚀,而经773和873K热处理镀层的腐蚀机制为点腐蚀。  相似文献   

13.
利用喷射电沉积技术制备了Ni-Fe-Co-P-CeO_2复合镀层。通过SEM、XRD、EDS等测试了复合镀层的表面形貌、截面形貌、物相结构和组成成分,同时,表征了复合镀层的硬度、耐磨和耐蚀性能,探究和分析了纳米稀土CeO_2颗粒浓度对镀层性能的影响。结果表明:该多元复合镀层为非晶态结构;随着镀液中CeO_2颗粒浓度的增加,复合镀层的显微硬度、耐磨性和耐蚀性均呈先增强后减弱的趋势;镀液中CeO_2颗粒浓度为1 g/L时,复合镀层的表面均匀致密,其HV_(0.1)显微硬度达到最大值5982 MPa,且具有最优的耐磨和耐蚀性能。  相似文献   

14.
镀液中SiC含量对化学镀Ni-P-SiC复合镀层结构和性能的影响   总被引:2,自引:0,他引:2  
利用扫描电镜(SEM)、X射线衍射(XRD)和腐蚀电化学测试研究了镀液中SiC含量对化学镀Ni-P-SiC复合镀层结构和耐蚀性能的影响。结果表明,随着镀液中SiC含量的增加,镀层沉积速率和镀层中SiC共沉积量呈现先增加后降低的趋势,镀层中P含量和沉积胞状颗粒尺寸逐渐降低。电化学测试结果表明,镀层中SiC共沉积量的变化不影响镀层腐蚀反应机理,但是镀层耐蚀性随SiC共沉积量的增加而降低。结构分析显示,NiP-SiC镀层致密性良好,基本完全覆盖了镁合金基体。  相似文献   

15.
AZ31B镁合金表面激光熔覆Cu-Ni合金层   总被引:1,自引:0,他引:1  
针对镁合金表面耐磨性和耐蚀性差的问题,利用横流CO2激光器在AZ31B镁合金表面激光熔覆Cu-Ni合金层,并利用光学显微镜(OM)、扫描电镜(SEM)和能谱分析仪(EDS)分析熔覆层与基体的结合界面特征以及显微组织和成分分布情况,测试合金层的显微硬度和耐蚀性。结果表明:合金层与基体结合良好,缺陷较少,但局部存在不均匀的Cu-Ni富集区,且在其边缘区域的枝晶间均匀分布着1~1.5μm的十字状Laves相;合金层的硬度分布比较均匀,约为75HV0.05,明显高于基体的显微硬度45HV0.05;Cu-Ni合金层比AZ31B镁合金基体的腐蚀电位正移317mV,腐蚀电流降低78mA/cm2,耐蚀性也得到较大改善。  相似文献   

16.
以碱式碳酸镍为主盐,NaH2PO2为还原剂,在铸态AM60B镁合金上化学镀镍。采用X射线衍射仪(XRD)、显微硬度计、金相显微镜及电化学工作站等,研究了pH值对镁合金化学镀镍的影响。结果表明:pH值由6.0增加到7.0,镀层镀速增加。3种pH值下沉积的镀层都为胞状结构,且pH值为6.5时,颗粒最小且致密均匀。 pH值由6.0增加到7.0,得到的镀层磷含量降低,且显微硬度降低,pH值为6.0时镀层硬度HV最高达到5400 MPa。3种pH值下都能得到完整的化学镀镍层,镍的主峰比较宽,第2及第3强峰基本没出现。耐蚀性试验结果表明,pH为6.5时得到的镀镍层耐蚀性最好,自腐蚀电位最高为–0.90 V。  相似文献   

17.
MB8镁合金阴极电沉积Ni-SiC纳米复合镀层微观结构及性能   总被引:4,自引:0,他引:4  
采用以硫酸镍为主盐的电沉积技术,在MB8形变镁合金表面制备纳米复合镀层。利用扫描电镜和透射电镜观察复合镀层的显微形貌和微观结构,利用X射线衍射仪和能谱仪对复合镀层进行物相分析,利用显微硬度计测定镀层显微硬度,利用快速磨损试验机测试复合镀层的耐磨性能,利用电化学测试仪测定复合镀层在3.5%NaCl(质量分数)溶液中的极化曲线。结果表明:在MB8形变镁合金表面可以获得结晶均匀、结构致密的纳米复合镀层,该复合镀层的显微硬度最高达HV 682,其耐磨性能超过硬铬镀层,且具有较好的耐蚀性能,自腐蚀电位较镁合金基体提高677 mV。  相似文献   

18.
目的 解决Cr-Ni系不锈钢在重腐蚀工业环境中本体耐腐蚀性能不足的问题。方法 采用激光熔覆技术制备Ni-Al2O3复合涂层,利用X射线衍射、扫描电镜、能谱仪(EDS)和显微硬度计、电化学工作站等技术研究所制备涂层的微观结构、相组成和元素分布,分析Al2O3含量对复合涂层形貌、显微硬度和耐腐蚀性能的影响规律。结果 复合涂层组织均匀、无明显缺陷,与基体之间存在明显的冶金结合区,沿着该复合涂层深度方向的微观结构依次呈现为胞状晶、定向生长的柱状晶及细小的等轴晶,物相则由均匀分布于复合涂层顶部的Al2O3颗粒和金属间化合物(Fe-Ni、Fe-Ni-Cr固溶体)构成。随着Al2O3含量的增大,复合涂层的显微硬度呈先增大后减小的趋势,腐蚀电位呈先增大后减小的趋势,而失重腐蚀速率和腐蚀电流密度呈先减小后增大的趋势,涂层的耐腐蚀性能呈先增强后减弱的趋势。在Ni-x%Al2O3(x为0、0.15、0.25、0.35,质量分数)复合涂层中,Ni-25%Al2O3复合涂层具有较高的显微硬度和良好的耐腐蚀性能,该涂层的显微硬度达到1 026.3HV,腐蚀失重速率为0.15 mg/(cm2.h),腐蚀电压和腐蚀电流密度分别为–326.6 mV和38.6 µA/cm2。当继续增加Al2O3的含量时,气孔和裂纹等缺陷开始增多,复合涂层的显微硬度和耐腐蚀性能均呈现下降趋势。研究表明,Ni-x%Al2O3(x≤25)复合涂层的显微硬度和耐腐蚀性能的变化由细晶强化、固溶强化和颗粒强化协同作用所致。结论 激光熔覆Ni-25%Al2O3复合涂层具有较高的硬度和良好的耐腐蚀性,可以有效防护Cr-Ni系不锈钢,提高重腐蚀工业环境下机械零件的耐蚀性和使役寿命。  相似文献   

19.
目的提高WC-Co-Ni纳米晶复合镀层的综合性能。方法利用脉冲电沉积法制备WC-Co-Ni纳米晶复合镀层,分析镀层的结构、表面形貌及元素成分,测试镀层的显微硬度。对WC-Co-Ni纳米晶复合镀层和304不锈钢进行5%(质量分数)H2SO4溶液浸泡实验,计算腐蚀速率,对比其耐蚀性。结果当脉冲参数为阴极电流密度5 A/dm2、脉冲占空比50%、脉冲频率2000 Hz时,施镀2 h制备的WC-Co-Ni复合镀层为纳米晶结构。镀层表面平整、光亮,无裂纹,由立方晶型的Ni、六方结构的WC和立方晶型的Co组成,WC-Co颗粒均匀弥散在纳米晶Ni镀层内,且m(Ni)∶m(W)∶m(C)∶m(Co)=6∶2∶1∶1。WCCo纳米颗粒起到了促进形核的作用,晶粒尺寸大多分布在20 nm左右。WC-Co纳米颗粒对镀层起到了弥散强化作用,使复合镀层的显微硬度达到600HV。在浸泡腐蚀实验中,随着温度从20℃升高至80℃,复合镀层的腐蚀速率增加缓慢,20℃下的腐蚀速率仅为0.4192 mm/a,80℃下的腐蚀速率也低于20mm/a。结论脉冲电沉积法制备的WC-Co-Ni纳米晶复合镀层硬度高于传统的不锈钢材料,耐蚀性也优于304不锈钢,综合性能较好。  相似文献   

20.
在低温下用电化学促进化学镀(EPEP)在AM60B镁合金上制备无预处理Ni-P涂层,并用SEM、AFM、EDS和XRD等技术对涂层进行表征。在阴极电流密度为4m A/cm~2、温度为50°C的条件下获得致密、均匀和中等磷含量的Ni-P涂层,其显微组织为晶态-无定型的混合态。在相同的化学镀条件下,但不施加阴极电流,合金表面形成了岛状的镍团簇镀层。在3.5%NaCl腐蚀电解液中进行电化学检测,发现EPEP镀后镁合金的耐蚀性有了明显提高。显微电镜观察进一步证实了电化学测试的结果,涂层的厚度、显微硬度、孔隙度及粘结强度均合格。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号