首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对煤化工中多相流管道系统的冲蚀磨损问题,运用Fluent软件构建流体动力学模型,获得磨损速率与管道位置的关系,用来预测磨损减薄的主要区域。数值计算结果表明:随着管道直径的增加,其最大磨损速率降低;曲率半径为3倍公称直径时,弯头的磨损率较小且均匀;颗粒形状越接近于球形,磨损率越低;当磨损颗粒粒径小于200μm时,磨损率随着粒径的增大而增大,当粒径超过200μm,磨损率几乎不再变化。对原管道系统进行设计改造,提出了一种结构优化改进方案,计算模拟结果显示优化方案可使其磨损率减小为约原来的1/2。  相似文献   

2.
针对煤化工中多相流管道系统的冲蚀磨损问题,运用Fluent软件构建流体动力学模型,获得磨损速率与管道位置的关系,用来预测磨损减薄的主要区域.数值计算结果表明:随着管道直径的增加,其最大磨损速率降低;曲率半径为3倍公称直径时,弯头的磨损率较小且均匀;颗粒形状越接近于球形,磨损率越低;当磨损颗粒粒径小于200 μm时,磨损率随着粒径的增大而增大,当粒径超过200 μm,磨损率几乎不再变化.对原管道系统进行设计改造,提出了一种结构优化改进方案,计算模拟结果显示优化方案可使其磨损率减小为约原来的1/2.  相似文献   

3.
根据某型超音速火焰喷涂(HVOF)枪管冲刷磨损情况,运用CFD软件对喷枪流场进行了模拟分析。在喷枪最大功率一定时,通过选择不同入射角度、WC-12Co粉末入射质量流量、粉末颗粒粒径及入射速度等入口条件,研究这些条件对HVOF枪管冲刷磨损的影响。研究结果发现:在入射角度45°、入射质量流量75g/min、颗粒粒径30μm及入射速度15m/s时,枪管冲刷磨损速率较低,可以保证喷涂作业连续高效地进行。  相似文献   

4.
四墙切圆锅炉水冷壁颗粒冲击特性数值模拟   总被引:2,自引:0,他引:2  
为深入了解水冷壁壁面的颗粒冲击特性,使用AnsysFluent对660 MW超临界锅炉的燃烧过程进行数值模拟,通过Fluent内冲蚀磨损模型得出燃烧器区域壁面的颗粒质量冲击量;利用Fluent软件的Sample功能输出壁面颗粒数据,将点数据导入Excel处理,得到冲击燃烧器区壁面的颗粒最高速度及颗粒速度值的分布情况. 结果表明:燃烧器喷口对侧区域的壁面冲击量最大值为6 kg·m-2·s,冲击燃烧器区壁面的颗粒最高速度可超过30 m·s-1,其占比不足冲击总颗粒量的0.3%,20~25 m·s-1的冲击颗粒占比接近10%,颗粒速度的主体为5 ~ 20 m·s-1. 壁面颗粒冲击量及颗粒速度模拟结果表明,在后墙第二组燃烧器壁面存在着6 kg·m-2·s的高颗粒冲击量及25 ~ 29 m·s-1的高颗粒冲击速度同时作用的区域,易发生严重磨损.  相似文献   

5.
为了研究高温、高压下核电站内两相流中所含粒子在管道发生沉积的现象,深入探究粒子对管道的冲蚀沉积机制,采用相似原理与近似模化方法,设计并搭建了能够捕捉核电管道系统实际运行中关键参数的实验台。对30 h弯管沉积实验结果进行分析可知,90°水平弯管的外壁以及内壁为沉积热点区域,外壁轴向角30°~45°区域为沉积量最大区域;Co元素在8 mm×8 mm×3 mm样片上的沉积量达1.98×10-10 g。研究结果可为核电站辐射剂量预测以及辐射防护提供参考数据。  相似文献   

6.
采用数值计算方法分析粒径对半自磨(SAG)机衬板磨损的影响。采用离散单元法(DEM)描述物料运动,采用切向碰撞能量磨损模型(SIEM)预测壁面磨损. 结果表明,粒径大小对衬板磨损存在显著影响. 粒径增大,衬板磨损亦随之增大;当粒径较小时(如:d=30 mm),磨损增幅尤为明显. 提升条的磨损主要在经过底脚区与颗粒发生剧烈碰撞时产生,不同粒径大小下均如此. 大颗粒获得的动能要远远大于小颗粒,且相比于小颗粒,大颗粒改变运动状态需要更长的时间,导致剧烈磨损的持续时间亦明显增加. 粒径大小对磨损在提升条上的分布无明显影响.  相似文献   

7.
为研究泵送混凝土中非牛顿流体-颗粒、颗粒颗粒和颗粒管壁之间的相互作用,探明管道堵塞机制,基于计算流体动力学和离散元法(CFD-DEM)分析了混凝土各相在泵送过程中的运动演化规律;利用非牛顿流体-颗粒两相流管道侵蚀寿命预测模型分析了混凝土流动对管道壁面的冲蚀磨损机制,预测了管道的冲蚀疲劳寿命。结果表明:模拟结果与工程及实验相吻合,在管道流场发生变化处(进口、出口、弯管处)管道壁面冲蚀相对严重,该部位的寿命仅为工程工况条件连续工作29 d;此外,颗粒粒径越大对壁面的磨损越严重,粒径范围15~30 mm的颗粒与管壁之间的切向作用力占比达42.81%,导致能量损失33.02%;弯管段颗粒碰撞次数大约是直管段的2倍,颗粒在直管段的动能明显高于弯管段且弯管段的切向动能损失高于直管段,这说明弯管段更容易堵塞。模拟结果能够为泵送混凝土的管道设计及维护提供理论支撑。  相似文献   

8.
应用STAR-CC莫拟软件和基于VOF模型基础上的Lagrange多相流模型,在流体入口速度为0.5~1.5m/s,系统固体颗粒体积分率为1%~8%的条件下,研究了汽液固三相循环流化床蒸发管内壁面处磨损率的轴向分布以及其随流体入口速度、固体颗粒体积含量和温度等操作参数的变化规律.结果表明:沿蒸发管轴向方向上,壁面处磨损...  相似文献   

9.
脉冲激光沉积技术制备的薄膜传感器的研究   总被引:2,自引:1,他引:2  
基于脉冲激光沉积(PLD)技术在光寻址电位传感器(LAPS)表面上制备了FeGeSbSe硫系玻璃薄膜,合成的靶材成分为Fe1.2(Ge28Sb12Se60)98.8,在Si/SiO2基质上的金属层为Cr/Au,硫系玻璃薄膜对Fe3+敏感,显示了良好的重复性和稳定性.在1×10-5~1×10-2 mol/L呈现线性,斜率为(56±2) mV/decade,检测下限为5×10-6 mol/L,当浓度高于1×10-4 mol/L时,响应时间不超过40 s;当低于此浓度时,响应时间不超过2 min.  相似文献   

10.
高炉粉煤喷吹风口磨损模型及应用   总被引:2,自引:1,他引:1  
分析了高炉喷吹粉煤颗粒流造成高炉风口壁面底侧的磨损情况,建立了预测高炉风口磨损量的数学模型:δm=ρp/ρcHs/Hce(D-dp)dp/2πD^2Cp|r=RωmE′cosθ。研究结果表明:高炉风口磨损主要与粉煤喷吹量、风口材质、风口几何尺寸、风口半收缩角以及热风速度和粉煤颗粒粒径等因素有关;当粉煤喷吹量相同时,减少粉煤颗粒在高炉风口壁面附近的浓度,改变风口壁面材质和使用较小粒径的粉煤,可减少高炉风口壁面磨损,由该数学模型算出的苛钢铁厂高炉风口平均寿命与其实际平均寿命基本吻合,这证明了此模型的可靠性和通用性。  相似文献   

11.
核电厂安全壳内放射性气溶胶的过滤效率是影响其周围环境放射性水平的重要指标。目前仅有关于单流道微流体惯性冲击器过滤效率的研究。多流道微流体惯性冲击器的主要过滤部件为中部有110°转折角的126个流道,通过FLUENT软件模拟计算1~5 m/s空气流速下多流道微流体惯性冲击器内部空气流场,并利用DPM (Discrete Phase Model)模拟0. 5~7. 0μm粒径的气溶胶粒子轨迹,对冲击器中部过滤效率与整体过滤效率进行比较分析。结果表明粒子过滤效率随粒径和入口流速的增大而增大。入口流速大于2 m/s时对安全壳内气溶胶粒子过滤效率超过90%。当气溶胶粒子粒径小于4μm时,多流道微流体惯性冲击器上方入口圆筒底面与下方出口圆筒内壁面可促进过滤效率的提高。出口圆筒的长度可以缩短至现有长度的1/2,从而减小冲击器的整体尺寸。  相似文献   

12.
对于空气⁃水和空气⁃水⁃阴离子交换树脂物系,在体积为130 L(内径为290 mm、高为2 000 mm)气升式旋流反应器(HALR)中,当表观气速为0~0.84 cm/s时,研究了固体装载量、颗粒粒径、有无分离器、不同导流筒形式对体积传质系数的变化规律。结果表明,三相物系的体积传质系数大于两相的体积传质系数;随着颗粒粒径的增大,体积传质系数呈下降趋势;有分离器的体积传质系数大于无分离器的;表观气速较小时,带翅片导流筒的体积传质系数最大。  相似文献   

13.
H油田MB储层是以孔隙为主的碳酸盐岩储层,注水开发是主要的开发方式,注入水的水质影响着油田开发的效果。对H油田的注入水水质标准进行研究,主要采用岩心驱替实验及动态腐蚀实验得出注入水中的悬浮物粒径中值、悬浮物含量、油量、细菌含量等主要控制指标。结果表明,悬浮物粒径中值≤2.5 μm;悬浮物质量浓度≤10 mg/L;油质量浓度≤15 mg/L;腐生菌(TGB)含量≤100 个/mL,铁细菌(IB)含量≤10 个/mL,硫酸盐还原菌(SRB)含量≤10 个/mL;该结果为H油田注入水水质标准提供了实验依据,亦为类似区块的注水水质研究提供了参考。  相似文献   

14.
目前,对聚合物驱油技术的需求正从低盐油藏向高盐和特高盐油藏转移,提高聚合物溶液在高盐油藏的适应性已经成为石油科技工作者亟待解决的技术难题。为了提高目标储层的采收率,主要对长庆油田“长4+5”高盐油藏区块,从物理化学、高分子材料学和油藏工程等知识入手,通过仪器检测、化学分析和物理模拟等实验方法,在高矿化度溶剂水条件下进行了聚合物溶液油藏适应性研究。结果表明,在聚合物质量浓度(CP)为300~900 mg/L的条件下,当聚合物的相对分子质量(M)分别为800×104、1 400×104、1 700×104、2 000×104时,聚合物溶液岩心渗透率极限(Kg)分别为(25~40)×10-3、(30~55)×10-3、(35~70)×10-3、(45~80)×10-3 μm2。在目标油藏注入水和温度条件下,油藏储层内岩石与水解聚丙烯酰胺聚合物溶液间配适性与岩石孔隙渗透率、聚合物相对分子质量和聚合物质量浓度等因素有关,相关曲线上方为配伍区,下方为堵塞区,孔喉半径中值与聚合物分子线团尺寸Dh的比值为3.02~5.76。  相似文献   

15.
以铣槽机泥浆运移过程为研究对象,利用计算流体力学(computational fluid dynamics, CFD)中的欧拉两相流模型,对泥浆管中的固液两相流进行模拟,并改变泥浆入口流速、泥浆黏度及密度等基本参数,得到不同参数条件下泥浆整体运移规律。结果表明:随着开挖深度增大,泥浆管压力损失减小,最大颗粒体积分数变化不明显;随着入口流速增大,最大颗粒体积分数呈现先减小后增大趋势,入口流速约为5~7 m/s时具有最小的颗粒堆积浓度;随着泥浆黏度及密度增大,泥浆运移时颗粒堆积情况减少,但泥浆黏度超过2.5 kg/(m·s)时,对泥浆携渣能力的提升作用减弱,泥浆管路压力损失明显增大;对比分析不同地层硬度导致颗粒直径变化对泥浆运移的影响,颗粒直径增大,颗粒堆积情况显著增加。根据模拟结果,对双轮铣地连墙施工提出优化措施,为解决泥浆循环过程中输送阻力大、管道淤堵等问题提供相应指导。  相似文献   

16.
纳米制冷剂在水平光管内沸腾换热的实验研究   总被引:1,自引:0,他引:1  
纳米制冷剂能否强化管内沸腾换热,目前尚无明确的结论.将配制0.1 g/L的CNTs/R141b纳米制冷剂在内径为8.12 mm的水平光滑圆管内进行沸腾换热实验,光管采用电加热丝进行恒热流密度加热.纳米制冷剂采用HCFC141b混加碳纳米管,体积密度为0.1 g/L.实验测试范围为:(i)质量流速为95.7-382.9 kg/(m2.s);(ii)热流密度为5-20 kW/m2;(iii)入口干度为0.1-0.8.考察了质量流速、干度及热流密度等因素对纳米制冷剂管内沸腾换热的影响.实验结果表明:在低质量流速(95.7 kg/(m2.s))下纳米制冷剂能够强化管内沸腾换热,随着流量及平均干度增加,纳米制冷剂强化换热的效果将会变小,甚至引起换热恶化.  相似文献   

17.
为了研究爆炸冲击波前气流的扬尘特征及其关键影响因素,基于欧拉-欧拉方法,对不同冲击波前流速、沉积粉尘密度和粉尘粒径对扬尘效果的影响进行了模拟研究.结果表明:沉积粉尘在较低的冲击波前流速(100~300m/s)条件下,具有较理想的扬尘效果;粉尘密度在1 000~3 000kg/m3范围内,沉积粉尘的密度对其扬起特征影响较小;粉尘粒径对冲击波的扬尘特征影响明显,在粉尘颗粒较大时(大于0.1mm),由于颗粒受重力作用明显,扬尘效果不佳;在粒径较小时,粉尘可以在巷道空间内得到较好的分散,形成的粉尘团簇的各粉尘层分布均匀.  相似文献   

18.
采用热颗粒示踪和信号相关法对气固内循环流化床的颗粒循环速率进行实验研究.考察操作气速、提升管下部孔径和提升管高度对于颗粒循环速率的影响.结果表明:在所考察的实验条件下,颗粒循环速率在15~70,kg/(m2.s)之间变化.操作气速增大时,颗粒流化程度增强,颗粒循环速率增加;提升管下部开孔数目不变而孔径增加时,颗粒循环阻力减小,颗粒循环速率明显增加;提升管高度由235,mm增加到295,mm时,颗粒循环速率呈现先升后降趋势,在提升管高度为265,mm时存在极大值.  相似文献   

19.
生物质燃料燃烧后所产生的烟气中含有大量的水蒸气, 在锅炉尾部添加冷凝换热器回收冷凝热可以有效提高系统热效率。选用的生物质燃料烟气中水蒸气的体积分数为27.9%, 基于Mixture模型并选用Lee模型作为冷凝传质模型对尾部烟气凝结的传热传质特性进行了数值模拟研究。假设流动为稳态, 湍流模型采用标准kε模型, 求解选用Simple算法, 研究了烟气侧不同入口流速下(1~4 m/s)温度场、流场及液态水体积分数的变化规律, 对翅片管换热器的表面传热系数及换热量进行了对比分析。计算结果表明, 随着入口流速的增加, 烟气出口温度逐渐升高, 壁面凝结速率不断增大, 而冷凝水量逐渐减少, 同时翅片管换热器的表面传热系数及换热量逐渐增加。  相似文献   

20.
采用雷诺应力模型(RSM)和随机轨道粒子模型模拟了粒径在10~200μm范围内的9组粒径的粒子在入口平均风速分别为2、4、6、8 m/s时,在截面尺寸为160mmx120 mm的光滑水平风管内各表面的沉积,重点分析了流态对粒子在矩形空调风管内沉降的影响.结果表明,流态对粒子在通风管道内沉积的影响较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号