首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Si和SiO_2粉为原料,采用化学气相反应法在多孔低密度C/C复合材料的表面和内部制备SiC涂层,然后以MoSi_2粉末为原料分别对C/C复合材料以及SiC涂层改性的C/C复合材料进行反应熔渗,获得MoSi_2改性C/C复合材料。采用扫描电镜、X射线衍射以及电子探针显微分析对该复合材料的微观形貌与结构进行研究,并测试材料的抗弯强度。结果表明,与MoSi_2直接熔渗制备Si-Mo改性C/C复合材料相比,熔渗前制备SiC涂层作为界面层,可有效降低Si-Mo改性C/C复合材料的孔隙率,获得更加致密的Si-Mo改性C/C复合材料,材料密度从2.93 g/cm~3提高到3.20 g/cm~3,开孔率从10.77%降低到4.07%;抗弯强度从87 MPa提高到121 MPa。该复合材料中SiC和MoSi_2的含量较高,弯曲断裂呈现假塑性断裂。  相似文献   

2.
以Si C粉末、醇溶性酚醛树脂粉末以及炭纤维毡、炭纤维无纬布为原料,采用料浆刷涂-针刺-温压固化-高温碳化工艺,在料浆中酚醛树脂的体积分数分别为10%和15%、温压固化压力分别为8 MPa和20 MPa条件下制备Cf/SiC多孔预制体,然后通过化学气相渗透法沉积Si C,快速制备Cf/SiC陶瓷基复合材料。观察和分析复合材料的形貌和组织结构,测定材料的密度、孔隙率、抗弯强度和断裂韧性等性能。结果表明:料浆中的酚醛树脂体积分数较低时,Cf/SiC复合材料的性能较好,并且随固化压力增加而提高。在酚醛树脂体积分数为10%、温压固化压力为20 MPa条件下得到开孔隙率为13.1%的高致密Cf/SiC复合材料,该材料的基体较致密,且纤维束和基体之间基本没有孔隙;当材料受到外加载荷时,通过纤维拔出、纤维脱粘和裂纹偏转来提高复合材料的强度和韧性,断裂方式为假塑性断裂,抗弯强度和断裂韧性都较高,分别为570 MPa和18.6 MPa·m1/2。  相似文献   

3.
采用无压烧结法制备得到了多孔的碳化硼,用扫描电镜研究了该材料的微观组织;并测定了不同孔隙率碳化硼的抗弯强度和密度,分析了多孔碳化硼的孔隙率与抗弯强度和密度的关系。研究结果表明:采用无压真空烧结法所制备的多孔碳化硼材料的微观组织烧结良好,烧结颈明显,孔隙大小比较均匀;当空隙率为30%时,所制备的多孔碳化硼密度为1.714 g/cm3,抗弯强度为100.85 MPa。  相似文献   

4.
先驱体浸渍裂解制备多孔C/SiC复合材料及渗透性研究   总被引:1,自引:1,他引:0  
以聚碳硅烷(PCS)为原料,采用先驱体浸渍裂解(PIP)工艺制备多孔C/SiC复合材料,并研究该材料的孔隙率、孔隙结构及渗透性能.结果表明,所制备的多孔C/SiC复合材料的孔隙主要由纤维束间的开孔组成.经过6次与7次PIP工艺致密化处理后的复合材料,开孔率分别为22.76%和20.51%,绝对渗透率分别为1.17×10-3和9.68×10-4 mm2.水和煤油在该材料中具有良好的渗透性能,渗透表现为线性层流流动,表明多孔C/SiC复合材料在发汗冷却材料中具有很大的应用潜力.  相似文献   

5.
张军战  杜艺  张颖  葛思宇 《稀有金属》2021,(10):1185-1191
多孔陶瓷是一种具有高比表面积、高渗透、耐腐蚀和生物相容性等优良性能的新型功能材料,在过滤分离、催化剂载体、多孔电极以及生物工程等领域具有广阔的应用前景。相较于传统的多孔陶瓷制备方法,冷冻浇注法具有工艺简单、环境友好以及材料适应强等优点,可以得到形状复杂且具有独特孔隙结构的多孔陶瓷部件。以叔丁醇为模板,通过冷冻浇注法制备了具有六方孔道结构的高气孔率碳化硅多孔陶瓷。利用扫描电子显微镜(SEM)分析了多孔陶瓷的孔结构特征,研究了固相量和冷冻温度对碳化硅多孔陶瓷显气孔率和强度的影响。结果表明:采用冷冻浇注工艺制备的SiC多孔陶瓷显气孔率均在65%以上,随着固相量的增加,多孔陶瓷的孔径与显气孔率减小,孔道数量增加,耐压强度增加;冷冻温度的降低造成多孔陶瓷的孔径尺寸减小,孔道数量增加,但显气孔率差别不大。当冷冻温度为-65℃时,多孔陶瓷沿着冷冻方向上形成较为明显的梯度孔分布。  相似文献   

6.
本文以酚醛树脂为粘结剂,采用粉末冶金方法制备碳化硅素坯,研究碳化硅素坯制备工艺对反应烧结碳化硅材料显微结构和性能的影响.结果表明:反应烧结碳化硅材料的抗弯强度和密度随碳化硅颗粒粒径的增大而减小,随素坯成形压力的增大呈现先增大后减小的趋势.密度和硬度随碳化硅素坯中碳密度的下降而减小.碳化硅颗粒粒径为W7时,酚醛树脂加入量为12%,碳加入量为13%和成形压力为120MPa为碳化硅素坯制备的最优参数组合,此时反应烧结碳化硅材料的抗弯强度、密度和HRA分别为330MPa、2.987 g/cm3和95.  相似文献   

7.
分别以溶胶-凝胶法制备的莫来石粉末和分析纯级氧化铝/氧化硅混合粉末为原料,经过凝胶注模成形后,在1 400~1 600℃温度下无压烧结,制备莫来石陶瓷,研究原料种类及烧结温度对莫来石陶瓷的显微结构、力学性能和抗热震性能的影响。结果表明:以溶胶-凝胶法制得的莫来石粉末为原料时,随烧结温度升高,陶瓷的密度和抗弯强度都是先升高后降低,烧结温度为1 500℃时,材料的密度和抗弯强度最高,分别为3.13 g/cm~3和155.85MPa,经过5次1 400℃?100℃沸水间热震后抗弯强度保留率达54.99%。以氧化铝/氧化硅混合粉末为原料时,起始烧结温度降低,1 400℃下烧结的陶瓷即具有较高的密度和抗弯强度,分别为3.01 g/cm~3和106.40 MPa,热震后的抗弯强度保留率为77.80%。抗弯强度随烧结温度升高而下降,烧结温度为1 600℃时抗弯强度下降至74.21MPa。  相似文献   

8.
以液态聚碳硅烷(LPCS)为先驱体,采用脉冲化学液气相沉积(脉冲CLVD)与先驱体浸渍裂解(PIP)联用工艺制备了C/SiC复合材料。采用排煤油法测定了材料的密度,三点弯曲法测试材料的力学性能,采用扫描电子显微镜观察弯曲试样的断口形貌。结果表明:密度为1.76 g.cm-3的沉积试样在经过5轮PIP工艺处理后,材料的密度达到1.98 g.cm-3,抗弯强度达到321.9 MPa,和PIP工艺完全致密化的复合材料的密度及性能相当,但制备周期缩短到10天。材料中的PIP-SiC基体除了能填充纤维束间及层间的大孔隙,还能进一步填充纤维束内由于纤维束丝分布不均匀而在脉冲CLVD工艺过程中残留的大孔隙。  相似文献   

9.
以化学气相沉积碳为界面层,聚碳硅烷为先驱体,经过10个周期的浸渍-裂解制备了三维编织碳纤维增强碳化硅复合材料(3D-Cf/SiC)。考察了碳涂层高温预处理和陶瓷先驱体第一个周期1600℃裂解对复合材料结构与性能的影响。结果表明:碳涂层高温预处理有助于复合材料密度的提高,弱化了复合材料的界面结合,从而显著提高了复合材料的力学性能,复合材料弯曲强度达到571 MPa,剪切强度51 MPa,断裂韧性18 MPa.m1/2。  相似文献   

10.
采用非水基凝胶注模工艺,对铜锡复合粉体进行了成形与烧结的研究。非水基凝胶注模的单体为甲基丙烯酸-2-羟基乙酯,溶剂为1,2-丙二醇,交联剂为二乙二醇丙烯酸酯,引发剂催化剂为过氧化苯甲酰-N,N-二甲基苯胺,分散剂采用聚乙烯比咯烷酮。制备出不同固相含量的悬浮液,经过凝胶成形与烧结,得到铜锡烧结多孔材料。探讨了坯体的性能、烧结过程中的收缩率、孔隙率、显微结构和力学性能。结果表明:经过脱模干燥后的坯体抗弯强度最大能达到12.76 MPa,坯体中的金属粉末颗粒均匀分散在有机三维骨架中,对于烧结多孔材料,随着固相含量的增加,烧结体密度增大,烧结收缩率降低,抗压性能提高。烧结试样孔隙率在20%~40%之间,烧结收缩率小于12%,抗弯强度最大为240 MPa,制备的烧结多孔材料孔隙分布均一、能制备复杂形状的部件。  相似文献   

11.
将HfB_2和ZrB_2陶瓷粉按体积比1:1混合制成高固相含量的浆料,通过料浆浸渍结合聚碳硅烷先驱体的浸渍裂解,制备密度为3.37 g/cm~3的C/C-HfB_2-ZrB_2-SiC复合材料,研究材料的显微组织、力学性能及抗烧蚀性能。结果表明:料浆浸渍法引入的HfB_2和ZrB_2陶瓷颗粒主要分布在C/C多孔复合材料的网胎层及针刺区,聚碳硅烷裂解产生的SiC主要分布在陶瓷颗粒及纤维束间,这3种陶瓷相都均匀地填充于材料内部。C/C-HfB_2-ZrB_2-SiC复合材料的抗弯强度和断裂韧性分别为382.6MPa和11.2MPa·m~(1/2),表现出明显的假塑性断裂特征。C/CHfB_2-ZrB_2-SiC复合材料在烧蚀过程中生成HfO_2-ZrO_2复相氧化膜阻止氧进入材料内部,提高抗烧蚀性能。在2 500℃/120 s的烧蚀条件下表现出优异的抗烧蚀性能,其线烧蚀率和质量烧蚀率分别为0.71μm/s和0.53 mg/s。  相似文献   

12.
以碳化硅微粉作为原料,并选用Al2O3、高岭土和Mg O作为烧结助剂,同时选用羧甲基纤维素钠(CMC)、聚丙烯酰胺(PAM)和可溶性淀粉作为添加剂,通过有机泡沫浸渍法制备出莫来石/碳化硅复相泡沫陶瓷材料。研究了不同原料组成、不同烧结温度等工艺参数对所制备的莫来石/碳化硅复相泡沫陶瓷物相组成、微观结构的影响,同时对莫来石/碳化硅复相泡沫陶瓷的孔隙率、力学性能进行了测试。研究结果表明:莫来石/碳化硅复相泡沫陶瓷的微观结构控制主要受碳化硅含量的影响,随着碳化硅含量的增加,莫来石/碳化硅复相泡沫陶瓷的孔隙率有明显的降低,但抗压强度随之提高;随着烧结温度的提高,孔棱的致密度增加,抗压强度亦显著提高;莫来石/碳化硅复相泡沫陶瓷的最佳烧结温度为1600℃,陶瓷粉料中最佳的Si C含量为35%。在1600℃烧结温度下,碳化硅的含量为35%时,获得了孔隙率为76.19%和抗压强度为4.63 MPa的莫来石/碳化硅复相泡沫陶瓷。  相似文献   

13.
以 SiC 粉和 ZrC 粉为原料,配制固含量体积分数为 30%的水基陶瓷浆料,分别采用浆料注射法和真空浸渍法将浆料引入到密度为 0.2 g/cm3的碳纤维预制体中,结合化学气相渗透和反应熔渗工艺制备 Cf/SiC-ZrC 复合材料。观察分析素坯和 Cf/SiC-ZrC 复合材料的形貌与组织结构,测定复合材料的密度、开孔率、抗弯强度和抗氧化性能等。结果表明,相比真空浸渍法,浆料注射法能一次将 SiC 粉和 ZrC 粉均匀引入碳纤维预制体中,坯体体积一次填充率为 37.3%。注射法制备的复合材料平均密度为 2.91 g/cm3,中心和外层的抗弯强度相差较小,分别为41.12 MPa 和 43.90 MPa,材料的断裂方式均表现为假塑性断裂。样品在空气中氧化 120 min 后,表面形成较连续致密的氧化层,氧化趋于平衡稳定,表现出较好的抗氧化性能。  相似文献   

14.
采用浆料浸渗结合先驱体浸渍-裂解法制备B_4C颗粒改性C/C-SiC复合材料,研究B_4C颗粒对C/C-SiC复合材料力学行为的影响。结果表明,B_4C颗粒改性的C/C-SiC复合材料的抗弯强度和断裂韧性分别为250.41 MPa和13.56 MPa·m~(1/2),与C/C-SiC复合材料相比,其抗弯强度下降45.5%,而断裂韧性提高46.0%。B_4C颗粒可促进SiC基体的烧结,但由于大量闭孔和基体弱界面的形成,导致材料抗弯强度降低。B_4C颗粒改性的C/C-SiC复合材料断裂韧性提高的主要原因在于,B_4C颗粒与SiC基体中的弱界面使裂纹在SiC基体中得到有效偏转,增加了裂纹在基体中的扩展路径,使得材料的断裂韧性提高。  相似文献   

15.
将SiC陶瓷粉末、醇-水混合溶剂、丙烯酰胺-亚甲基双丙烯酰胺凝胶体系以及堇青石-锂辉石复合烧结助剂配制成料浆,采用凝胶注模成型–烧结工艺制备SiC多孔陶瓷,研究烧结助剂用量和烧结温度对多孔SiC陶瓷的形貌与显微结构、物相组成以及强度、孔径、开孔率与渗透率等性能的影响。结果表明:温度高于1 300℃时,复合烧结助剂熔融形成固溶体,从而实现SiC多孔陶瓷的低温烧结;随烧结助剂用量增加或烧结温度升高,SiC多孔陶瓷的开孔率和气体渗透速率均下降。在料浆中SiC陶瓷粉体体积分数为20%、烧结助剂质量分数为10%、醇水体积比为7:3、锂辉石与堇青石质量比为2:1的条件下,于1 370℃烧结后得到的SiC多孔陶瓷,孔隙率高、孔径分布集中(4~15μm),孔形貌呈均匀的三维无规则贯通结构,抗弯强度为8.5 MPa,开孔率达到67.9%,透气率为280.5 m~3/(m~2·Pa·h)。  相似文献   

16.
本文采用凝胶注模成形工艺,用钴包覆钛粉制备多孔钛合金植入材料。研究了钴对成形工艺中浆料的粘度、孔隙率以及烧结体的抗压强度的影响,预混液中有机单体的浓度、单体(AM)/交联剂(MBAM)的比例对坯体的强度的影响。通过改变烧结温度和固相含量,可以实现多孔钛钴合金的孔隙率和抗压强度分别在29%~58%、68~378 MPa范围内调节,采用含钴8%的钴包覆钛粉以33%的固相含量制备坯体,在1 130℃保温2 h制备的多孔钛合金材料,孔隙率为45.6%、抗压强度为227 MPa、抗弯强度为213 MPa、弹性模量为15.8 GPa,力学性能与自然骨接近,适宜做自然骨替代材料。  相似文献   

17.
以活性炭和碳化硅为烧结助剂,采用真空热压工艺,制备了碳化硼陶瓷材料.研究了真空热压工艺、烧结助剂对碳化硼陶瓷性能及断口的影响,结果表明,以活性炭和碳化硅为烧结助剂的碳化硼陶瓷随热压压力增加,开口孔隙度减小,相对密度和抗弯强度增加.添加活性炭的碳化硼陶瓷在热压压力为35MPa下,开口孔隙度有最小值(1.7%),相对密度(91.7%)和抗弯强度(277.6MPa)达最大值;以碳化硅为烧结助剂的碳化硼陶瓷在热压压力为30MPa下,开口孔隙度有最小值(0.66%),相对密度(91.9%)和抗弯强度(173.6MPa)达最大值.添加活性炭的碳化硼陶瓷随保温时间由30min增加到90min,开口孔隙度逐渐减小而相对密度逐渐增加(90min时分别达到0.19%、99.6%),抗弯强度先增加后减小,在保温时间为60min时抗弯强度达到最大值(351.7MPa).在相同的真空热压工艺下,添加活性炭的碳化硼陶瓷与添加碳化硅的碳化硼陶瓷相比,其开口孔隙度低,抗弯强度高.初步探讨了真空热压工艺以及添加剂促进碳化硼陶瓷烧结的机理.  相似文献   

18.
采用无压浸渗法制备了SiC/Al复合材料,考察了复合材料中SiC颗粒尺寸对复合材料的组织结构、抗弯强度、摩擦磨损性能的影响.结果表明:随着SiC颗粒尺寸的减小,SiC/Al复合材料的残余气孔率逐渐减小,密度和抗弯强度逐渐增加;粒度配比有利于提高复合材料的抗弯强度.与灰铸铁配副时,材料的摩擦系数与磨损率明显依赖于碳化硅颗粒尺寸,二者均随颗粒尺寸的增大而先降低后增大.粒度配比能明显改善复合材料的干摩擦磨损性能.粗细颗粒的粒度配比具有相互强化的作用,有利于降低摩擦系数和磨损率,并使其趋于稳定.  相似文献   

19.
本文主要研究了多孔YSZ可磨耗封严涂层孔隙率与其力学性能的关系。采用高能等离子喷涂制备了不同孔隙率自支撑YSZ涂层试样,采用三点弯曲实验研究了孔隙率与YSZ涂层室温和1060℃高温力学性能的关系。结果表明,涂层孔隙率在11.61%~28.80%之间时,室温下涂层断裂韧性为12.48 MPa·m1/2~20.96 MPa·m1/2,抗弯强度为17.10 MPa~43.75 MPa,弹性模量为3.64 GPa~13.13 GPa,1060℃下涂层断裂韧性为9.79 MPa·m1/2~13.71MPa·m1/2,抗弯强度为20.20 MPa~35.12 MPa,弹性模量为5.15 GPa~11.00 GPa。随孔隙率增加,涂层断裂韧性增加,抗弯强度、弹性模量减小。在中、低孔隙率下,涂层在高温下的抗弯强度、弹性模量和断裂韧性低于室温,在高孔隙率下,高温条件下涂层的抗弯强度、弹性模量高于室温。随着孔隙率的增加,高温条件涂层力学性能的变化趋势相较室温时更为平缓。  相似文献   

20.
烧结温度对碳化硅陶瓷力学性能的影响   总被引:1,自引:0,他引:1  
采用硼、碳助剂无压烧结制备碳化硅陶瓷。针对烧结温度与碳化硅烧结体密度、抗弯强度以及硬度之间的关系进行了试验研究,并对不同温度下制备的烧结体进行了显微结构形貌观察和XRD图谱分析。结果表明,烧结温度在2190~2220℃范围内可以制备密度高、力学性能好的碳化硅陶瓷。其相对密度超过96%;抗弯强度接近400MPa;维氏硬度23GPa以上。在试验温度范围内,密度与抗弯强度之间的关系近似为线性关系,密度越高抗弯强度和硬度性能越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号