首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
以抚顺石油二厂催化裂化汽油为原料,甲酸为催化剂,双氧水为氧化剂进行氧化萃取脱硫实验研究,实验对催化裂化汽油氧化萃取脱硫催化剂进行评价,筛选出甲酸催化剂。对氧化剂体积分数、甲酸与双氧水体积比、反应温度和反应时间等脱硫工艺条件进行考察,得出适合的脱硫工艺条件为:氧化剂的体积分数为6%,甲酸与双氧水的体积比为3.5∶1,反应温度为45℃,反应时间为60 min,在此条件下,催化裂化汽油的脱硫率为76.4%。  相似文献   

2.
焦化柴油氧化脱硫的工艺研究   总被引:2,自引:2,他引:2  
以双氧水作氧化剂,甲醇作萃取剂,采用氧化反应与溶剂萃取相结合的方法对焦化柴油进行了氧化脱硫研究。通过单因素实验考察了氧化剂质量、反应时间、反应温度、催化剂的选择、催化剂的质量等对焦化柴油脱硫率的影响。结果表明,最适宜的氧化脱硫条件为:甲酸作催化剂,反应温度60℃、反应时间60min、剂油体积比为0.1,V(氧化剂):V(催化剂)为1.0。萃取试验条件为:在室温条件下,V(萃取剂):V(柴油)为1.0,静置时间20min。精制后柴油回收率达93.0%,柴油中硫的质量分数可降至350μg/g以下。  相似文献   

3.
以双氧水与乙酸为氧化剂,对催化裂化汽油进行氧化脱硫。按正交设计方法考察双氧水的体积分数、双氧水与乙酸的体积比、反应温度及反应时间对脱硫率和收率的影响。结果表明,各因素对脱硫率的影响的大小顺序为:反应温度>双氧水与乙酸的体积比>双氧水的体积分数>反应时间;各因素对收率的影响顺序为:反应温度>反应时间>双氧水与乙酸的体积比>双氧水的体积分数。并得到氧化反应的最佳条件:双氧水的体积分数为5%,双氧水与乙酸的体积比为2∶3,采用两段温度反应,先30℃后50℃,反应时间各为10min。此时,硫的质量分数由112.2μg/g降至7.038μg/g。  相似文献   

4.
采用超声氧化法脱除柴油中硫化物,降低了柴油的硫含量。实验考察了氧化温度、氧化时间、氧化剂体积分数、催化剂体积分数等条件对柴油脱硫效果的影响。结果表明,选用甲酸与硫酸混合物作为催化剂,催化剂体积分数为2%(催化剂中甲酸与硫酸体积比为3∶2)、氧化剂体积分数为9%、反应温度为70 ℃、反应时间为60min时,采用超声氧化法脱除重油催化裂化柴油中的硫化物,再经N,N-二甲基甲酰胺(DMF)萃取氧化,柴油脱硫率达到83%,十六烷值有所升高,提高了柴油的质量。  相似文献   

5.
H2O2固相氧化法合成氧化淀粉及微波催化   总被引:11,自引:0,他引:11  
用双氧水作氧化剂固相法合成了氧化淀粉。考察了催化剂及其用量、反应温度、反应时间、水量、双氧水的用量、微波等条件对氧化程度的影响。实验结果表明适宜的反应条件为:淀粉:Cat3:水量的质量为100:0.5:10,70℃反应5h;改变双氧水用量可以得到不同羧基含量的氧化淀粉;微波能大大加快反应速度,反应时间只需几分钟。  相似文献   

6.
焦化汽油催化氧化脱硫的工艺研究   总被引:1,自引:1,他引:0  
以过氧化氢、甲酸为氧化剂,磷钼酸季铵盐为催化剂,糠醛为萃取剂,通过催化氧化和萃取结合的方 法进行了焦化汽油脱硫实验。考察了过氧化氢体积、催化剂质量、萃取剂体积、反应时间和反应温度对汽油脱硫率 的影响。通过优化工艺条件提高了焦化汽油催化氧化脱硫的能力,结合生产实际得出焦化汽油脱硫的最佳工艺条 件。最佳工艺条件为:反应时间60min,反应温度70℃,萃取剂体积为50mL,氧化剂体积为2.5mL,催化剂质量为 0.4g。  相似文献   

7.
用H2O2-有机酸氧化脱除柴油中的硫化物   总被引:17,自引:5,他引:12  
通过氧化反应与溶剂萃取分离相结合的方法对辽河直馏柴油氧化脱硫。双氧水与甲酸作为氧化剂反应生成的过氧酸,可以把柴油中的含硫化合物有选择性地氧化成相应的具有很强极性的砜。根据相似相溶原理,使用极性溶剂N,N-二甲基甲酰胺(DMF)将这些砜从柴油中脱除,从而降低油品中的硫含量。考察了反应时间、氧化温度、剂油体积比、超声波等反应条件对脱硫率的影响。结合生产实际,确定了实验室最佳操作条件:反应时间为60min;反应温度为70℃;剂油体积比为1∶10;超声波作用利于氧化脱硫。结果表明,在最佳实验条件下,脱硫率可达67.5%,基本满足国家标准的要求。  相似文献   

8.
超声辅助作用柴油深度氧化脱硫的影响因素   总被引:1,自引:1,他引:0  
催化氧化脱硫是降低柴油硫含量的非加氢脱硫工艺,在催化氧化溶剂抽提的基础上,增加超声波为反应提供能量。采用H2O2-甲酸作为氧化剂将辽河直馏柴油中的硫化物氧化成相应的砜,考察了氧化反应时间、温度、剂油体积比对脱硫效果的影响。实验结果表明,在超声频率为28 kHz,超声功率为200 W,H2O2和甲酸体积比为1∶1,萃取剂为N,N-二甲基甲酰胺(DMF),一次萃取10 min,萃取剂与油体积比为1∶2的条件下,反应氧化剂与油的体积比为1∶10,温度为50 ℃,氧化反应时间为10 min为较适宜的条件,其脱硫率达到87.8%。  相似文献   

9.
用双氧水作氧化剂固相法合成了氧化淀粉。考察了催化剂及其用量、反应温度、反应时间、水量、双氧水的用量、微波等条件对氧化程度的影响。实验结果表明适宜的反应条件为:淀粉∶Cat3∶水量的质量为100∶0 5∶10,70℃反应5h;改变双氧水用量可以得到不同羧基含量的氧化淀粉;微波能大大加快反应速度,反应时间只需几分钟。  相似文献   

10.
采用氧化⁃萃取法对减黏裂化柴油进行脱硫研究。使用O3为氧化剂,甲酸为催化剂,并用极性有机溶剂萃取分离柴油中含硫化合物氧化反应生成的亚砜、砜类等极性氧化物。考察了反应体系中氧化时间、氧化温度、萃取剂油体积比以及甲酸质量分数对柴油脱硫率的影响,并确定了最佳工艺条件。结果表明,在氧化⁃萃取工艺条件下,减黏裂化柴油的硫质量分数由4 980 μg/g降低至490 μg/g,脱硫率为90%。通过对减黏裂化柴油氧化前后的性质对比可知,氧化⁃萃取法可以改善减黏裂化柴油的色度和酸值等性能。  相似文献   

11.
NaY分子筛负载型离子液体在催化裂化汽油脱硫中的应用   总被引:2,自引:0,他引:2  
采用物理浸渍法将[C5mim]HSO4(1-戊基-3-甲基咪唑硫酸氢盐离子液体)负载在分子筛表面,得到分子筛负载型离子液体。采用萃取氧化法,考察了负载型离子液体对催化裂化汽油的脱硫效果。结果表明,分子筛孔道大小对脱硫效果有一定的影响。以NaY分子筛为负载剂,质量分数为35%的H2O2为氧化剂,考察了氧化剂加入体积、萃取时间、剂油体积比等不同条件对催化裂化汽油的脱硫效果。确定了最佳脱硫实验条件为10g负载型咪唑硫酸氢根离子液体,100mL FCC汽油,1mL H2O2,40℃下反应60min后对汽油有较高的脱硫率,一次脱硫率可达94%,初始含硫质量分数为200μg/g的汽油经一次脱硫后含硫质量分数可降至10μg/g以下。反应结束后,通过简单的倾倒使负载型离子液体与汽油分离,负载型离子液体通过回收后可重复使用。  相似文献   

12.
在没有任何有机溶剂和卤素的条件下,以质量分数30%的H2O2为氧化剂,Na2WO4·2H2O为催化剂,在酸性离子液体[(CH2)4SO3HMIm]TSO中,将柴油中的噻吩硫氧化为矾类物质,并通过离子液体将其萃取,同时考察了反应温度、反应时间和离子液体用量等因素对氧化脱硫反应的影响,得出最佳反应条件:3mL油样(含硫质量分数为500μg/g),n(离子液体)/n(Na2WO4·2H2O)=40:1,0.7mL双氧水,333K,2h,脱硫率为97.4%。反应结束后,通过简单的倾倒将油样和催化剂分离,重复使用4次,其催化活性基本不变。  相似文献   

13.
随着环境法的日益完善,燃料油的低硫化成了亟待解决的问题.为达到深度脱除油品中硫化物的目的,提出将离子液体应用于萃取一催化氧化脱除油品中噻吩类硫化物.合成了三种酸性的离子液体1-甲基-3-乙基咪唑硫酸氢盐([Emim]HSO4)、1-甲基-3-丁基咪唑硫酸氢盐([-Bmim]HSO4)、1-甲基-3-辛基咪唑硫酸氢盐([-Omim]HSO。)分别用作萃取剂和催化剂,30%H202作为氧化剂,噻吩溶于正辛烷配置成模拟油,用于脱硫实验.考察了反应温度、反应时间、双氧水的加入量等因素对脱硫效果的影响.实验结果表明,脱硫效果的顺序为:[Omim]HSO。〉[-Bmim]HSO。〉[-Emim]HSO4.同时在[-Bmim]HSO4-H2O2体系中,脱硫的最佳条件为:剂油比为1.0,反应温度85℃,反应时间4h,氧硫比为28,脱硫率可达到97.6%.利用硫酸氢盐类的离子液体脱硫可达深度脱硫的标准.  相似文献   

14.
通过直接沉淀法制备了钨酸铜, 采用高温煅烧和双氧水活化提高钨酸铜的氧化脱硫活性。以活化后的钨酸铜为催化剂、 过氧化氢为氧化剂、 咪唑氟硼酸盐离子液体为萃取剂, 氧化脱除模拟油中的二苯并噻吩( D B T) 。研究了反应时间、 反应温度、 催化剂质量、 过氧化氢体积、 萃取剂类型、 硫化物类型等因素对脱硫率的影响, 同时考察了催化剂/萃取剂脱硫体系循环使用性能。脱硫实验的最佳条件为: 反应温度为7 0℃、 H2O2体积为0. 4mL、 催化剂质量为0. 0 2g、 以咪唑氟硼酸盐为萃取剂、 反应时间为6 0m i n。在最佳条件下脱硫率可以达到9 3%。催化剂重复使用5次, 脱硫率依然比较高, 为8 2%。  相似文献   

15.
以玛瑞减压渣油为原料,采用乙酸⁃过氧乙酸氧化体系对减压渣油进行预氧化处理,通过N,N⁃二甲基甲酰胺(DMF)萃取脱除渣油中硫化物。在m(渣油)/m(溶剂)=1∶1的条件下,考察氧化剂质量分数、氧化时间、氧化温度对渣油中硫脱除的影响,采用X射线光电子能谱(XPS)、傅立叶红外光谱仪(FT⁃IR)对氧化前后渣油的有机硫类型的分布及官能团进行检测。结果表明,在m(渣油)/m(溶剂)/m(乙酸⁃过氧乙酸)=5∶5∶4、氧化温度为70 ℃、氧化时间为50 min的条件下,氧化后的渣油C-S伸缩振动吸收峰明显减弱,噻吩型硫被氧化为砜类物质后可萃取脱除,渣油中硫质量分数从4.01%降至2.67%,脱硫率达到33.37%,渣油回收率94.82%。  相似文献   

16.
采用氧化反应与溶剂抽提相结合的方法对抚顺石油二厂催化裂化柴油进行了脱硫实验 ,双氧水与冰醋酸作氧化剂 ,它们反应生成的过氧乙酸可以把柴油中的含硫化合物有选择性地氧化成相应的具有很强极性的砜。根据相似相溶原理使用极性溶剂二甲亚砜将这些砜从柴油中除去 ,从而降低了硫含量。实验过程中分别考察了氧化剂用量、反应时间、氧化温度、剂油比、抽提温度等对催柴硫含量的影响。结合生产实际 ,确定了实验室适宜的操作条件 :反应温度 85~ 90℃ ;氧化剂用量 10 .0 (氧化剂用量与硫含量摩尔比 ) ;反应时间 2 0min ;剂油比 1.0 (体积比 ) ;抽提温度室温。结果表明 ,在适宜实验条件下 ,抽余油的硫含量可以降至 5 0 0 μg/ g以下 ,满足国家标准的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号