首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚环氧乙烷(PEO)/高氯酸锂(LiClO_4)为基体材料,碳酸丙烯酯(PC)为增塑剂,正硅酸乙酯(TEOS)水解制得的纳米SiO_2为掺杂相,采用匀胶法制备了PEO/LiClO_4-(PC)_x-(SiO_2)_y电解质薄膜,考察了PC单掺和PC-SiO_2共掺对电解质薄膜微观形貌、电性能和物相结构的影响。结果表明,随着PC掺量的增加,室温下电解质薄膜离子电导率呈现先增加后减小的趋势,PEO/LiClO_4-(PC)0.4电解质薄膜的电导率达到极值6.26×10~(-6)S/cm,与未增塑PEO/LiClO_4薄膜相比提高了66%,表面平整度有所提高但仍存在少量波纹。PC与纳米SiO2共掺时制备的PEO/LiClO_4-(PC)0.4-(SiO_2)0.08电解质薄膜离子电导率达到最高值为1.55×10-5 S/cm,与PEO/LiClO_4-(PC)0.4电解质薄膜极值相比提高了1.5倍,薄膜表面平整。X射线衍射分析表明,PC和纳米SiO_2的加入大大降低了PEO的结晶度,有利于提高电解质薄膜的离子电导率。  相似文献   

2.
将实验室制备的两种烧结型的Li1.3Al0.3Ti1.7(PO4)3盐与PEO/LiClO4复合,制得了PEO-LiClO4-Li1.3Al0.3Ti1.7(PO4)3复合聚合物电解质,测量了298~373K温度范围内的阻抗,得出这种体系的复合聚合物电解质的离子电导率在室温最高值为1.387×10-5S/cm,在373K时可达到1.378×10-3S/cm.  相似文献   

3.
以锆酸锶掺杂铌、锂钙钛矿型锂离子固体电解质(Li_(3/8)Sr_(7/16)Nb_(3/4)Zr_(1/4)O_3为研究对象,采用高温固相法进行制备并研究最佳烧结温度。X射线衍射分析表明,1250℃烧结温度下钙钛矿相明显且杂相少。烧结片通过电子扫描显微镜表征表面形貌,烧结温度为1250℃时电解质晶粒更为饱满紧密且无气孔,但晶粒之间存在融化现象。利用交流阻抗分析可见,烧结温度在1250℃时制得的Li_(3/8)Sr_(7/16)Nb_(3/4)Zr_(1/4)O_3电导率最高,在40℃时电导率为1.14×10-4S/cm,活化能为0.335eV。作为固态电解质有望应用在全固态锂离子电池领域。  相似文献   

4.
(PEO)8LiClO4-TiO2复合电解质膜的制备表征及导电性能   总被引:3,自引:0,他引:3  
以聚氧化乙烯/高氯酸锂复合物(简记为(PEO)8L iC lO4)为基体,通过钛酸丁酯的水解缩合反应在其中原位生成T iO2粒子,制备了(PEO)8L iC lO4-T iO2复合聚合物电解质膜,采用原子力显微镜(AFM)、差示扫描量热法(DSC)和交流阻抗方法研究了复合电解质膜的形貌、结晶、熔融行为和离子电导率。结果表明,T iO2粒子在基体中分散均匀,加入T iO2后复合电解质体系的玻璃化转变温度和结晶度均有所下降,而电导率明显提高,当T iO2添加量为5%时电导率最大,20℃和80℃的电导率分别为5.5×10-5S/cm和1.1×10-3S/cm。  相似文献   

5.
通过溶解-铸膜法制备了聚乙烯醇(PVA)-KOH-H2O碱性聚合物电解质膜,并向电解质中加入聚氧化乙烯(PEO)来提高离子电导率。X射线衍射(XRD)和红外光谱(FT-IR)结果表明,PEO的加入一定程度上降低了结晶度,薄膜处于无定型态。扫描电镜(SEM)表征结果显示薄膜呈非均匀网络微孔结构。交流阻抗结果表明,该薄膜室温离子电导率在mPEO/m(PVA+PEO)=0.2时达最大,为2.78×10-2S/cm。循环伏安结果表明该薄膜具有较好的电化学稳定性。  相似文献   

6.
以聚氧化乙烯/ 高氯酸锂络合物( ( PEO)8LiClO4 ) 为基体, 通过钛酸四丁酯的水解缩合反应在基体中原位生成TiO2粒子, 制备了TiO2 / ( PEO)8LiClO4复合聚合物电解质膜。采用SEM、DSC 和交流阻抗方法分别研究了电解质膜的表面形貌、热性能和离子导电性能。结果表明, 原位生成的TiO2 粒子均匀分散于PEO 基体中。复合TiO2后电解质膜的玻璃化转变温度和结晶度降低。电解质膜的离子导电行为满足Arrhenius 方程, 并在5 %TiO2含量时体系的电导率出现最大值5. 5 ×10 -5 S/ cm (20 ℃) 。以此膜为电解质组装的全固态聚合物锂电池放电时电压平稳, 20 次循环后放电容量保持在107 mAh/ g。   相似文献   

7.
王严杰  潘颐 《功能材料》2004,35(Z1):1880-1884
将实验室制备的Li1.3Al0.3Ti1.7(PO4)3与PEO根据不同EO/Li摩尔比,通过溶液浇铸法技术制备了锂离子导电的PEO-Li1.3Al0.3Ti1.7(PO4)3固态聚合物电解质(SPE)膜,真空干燥后经X射线衍射分析、红外(IR)测试、示差扫描量热分析(DSC)分析和电化学阻抗测试(EI)研究了其结构与电导率性能之间的关系.证实了在固态聚合物电解质PEO-Li1.3Al0.3Ti1.7(PO4)3体系中存在络合体,并且当EO/Li=16时,这种聚合物电解质活化能最低值为0.475 eV,电导率值最佳,即25℃为2.631×10-7S/cm,100℃为1.185×10-4S/cm.  相似文献   

8.
设计并制备了PEO-LATP/LAGP陶瓷复合电解质. 使用NASICON结构的Li1.4Al0.4Ti1.6(PO4)3 (LATP)或 Li1.5Al0.5Ge1.5(PO4)3 (LAGP)作为陶瓷基体, 以PEO为粘结剂, 得到了均匀、厚度仅为20 μm的复合电解质膜. 通过电化学性能表征发现当w(LATP/LAGP):w(PEO)=7:3时, 复合电解质膜具有最高的室温电导率, 达到0.186 mS/cm (PEO-LATP)与0.111 mS/cm (PEO-LAGP). 通过充放电循环实验表明, Li/复合电解质/LiCo1/3Ni1/3Mn1/3O2电池的首次放电容量达170 mAh/g. 使用PEO-LATP复合电解质的电池在循环时有较大的容量衰减, 而使用PEO-LAGP复合电解质则循环性能有明显的改善, 在10次循环后仍保持在150 mAh/g.  相似文献   

9.
陈欣欣  邹海凤  陈卓  程琥 《功能材料》2022,(8):8165-8169
以对苯乙烯磺酸钠为原料,通过一系列反应合成了单离子导体聚(对苯乙烯磺酰)(三氟甲基磺酰)亚胺锂(LiPSTFSI),将其与PEO按不同EO/Li+共混,制备单离子导电聚合物电解质膜。研究表明,PEO/LiPSTFSI电解质膜在270℃下具有良好的热稳定性;在60℃时,EO/Li+=16的电解质膜的离子电导率达到1.94×10-5 S/cm,且锂离子迁移数>0.85,接近于锂单离子导体;同时电解质膜表现出较好的电化学稳定性和界面性能。  相似文献   

10.
室温一步法合成的交联聚醚高分子固体电解质薄膜   总被引:2,自引:2,他引:0  
用室温一步法由2000左右分子量的聚乙二醇衍生物和多官能异氰酸酯PAPl合成了交联聚硅类高分子固体电解质薄膜。该种薄膜厚度在100μ左右,室温离子电导率为10~(-5)S/cm数量级,且具有较好的尺寸稳定性。若加入丙烯碳酸酯或N-甲基乙玖胺作添加剂,可使该种高分子固体电解质薄膜的室温离子电导率达10~(-4)S/cm以上。  相似文献   

11.
徐祖婧  赵相峰 《功能材料》2024,(1):1172-1178
用化学共沉淀法固态聚合物电解质(SPE)因其独特的安全性能受到越来越多的关注。以聚环氧乙烷(PEO)为基体,通过引入聚离子液体(PIL),制备了一种新型SPE(PIL@PEO SPE)。通过将PIL穿插于PEO链段中,有效降低了PEO的结晶度,提高了SPE的离子电导率(6.63×10-4 S/cm)。由其制备的固态电池在0.5C,60℃时,Li/LiFePO4电池首次放电容量高达147.6 mAh/g,经过长达300圈充放电循环,容量保留率仍然在90%以上。  相似文献   

12.
以溶液浇铸法合成了聚环氧乙烷-Li 盐复合物 LiClO_4·(PEO)_n 和 LiCF_3SO_3·(PEO)_n。用交流阻抗法、线性极化技术和电位扫描伏安法研究材料的电化学性能.并以热重分析法(TGA)和热变形性能(TMA)测定热化学稳定性和耐热力学性能。对于 LiClO_4·(PEO)_n 体系(n=9—23),σ_(45∶C)>10~(-5)S/cm;σ_(65∶C)>10~(-4)S/cm;LiCF_3SO_4·(PEO)_n 体系(n=9—27),σ_(65∶C)>10~(-5)S/cm,σ_(100∶C)>10~(-4)S/cm.分解电压 E_d>4.5V,热分解温度 T_d>250℃。这类材料可以作为80—120℃工作的全固态高能 Li 蓄电池的固体电解质材料。  相似文献   

13.
以聚甲基乙撑碳酸酯(PPC)和聚氧化乙烯(PEO)为基体材料,添加经聚甲基丙烯酸甲酯(PMMA)接枝改性的纳米TiO2(nano TiO2-PMMA),采用溶液浇铸法制备了锂离子电池PEO/PPC/TiO2-PMMA复合聚合物电解质(CPE)膜。用热重分析、红外光谱、交流阻抗、扫描电镜等方法研究了nano TiO2-PMMA对复合聚合物电解质膜的电化学性能影响。结果表明,当TiO2的接枝率为8.0%时,PEO/PPC/TiO2-PMMA复合聚合物电解质膜具有良好的电化学性能:室温离子电导率达到1.3×10-5 S/cm,电化学稳定窗口达到4.5V以上,锂离子迁移数为0.49。  相似文献   

14.
纳米CeO2对(PEO)10LiClO4电解质体系电学和力学性能的影响   总被引:1,自引:0,他引:1  
以乙腈为有机溶剂,以高纯纳米稀土氧化物CeO2为无机填料,采用溶液浇铸法制备了(PEO1)0Li-ClO4-x%(质量分数)CeO2(x=0、2、6、9、12、15)全固态复合聚合物电解质(CPE)薄膜。交流阻抗测试表明,适量添加CeO2可有效抑制PEO结晶并拓展锂离子传输所需的无定形区域,从而使CPE薄膜的离子电导率有明显提升,当CeO2的含量为9%(质量分数)时,CPE的离子电导率达到最大值,25℃时为1.71×10-5S/cm,但过量CeO2对锂离子传输具有一定的阻碍,XRD图像证实了这一结论。同时,CeO2的引入可很好地分散和传递应力,对CPE的韧性有明显增强作用,当CeO2的含量为15%(质量分数)时,拉伸强度达到2.07MPa,提高了4.45倍。  相似文献   

15.
镁离子电池发展到现在,能够适合其多次充放电的稳定结构液相电解质至今没突破,使镁离子电池的发展应用严重受限~([1-2])。如有优良的固体电解质~([2-3])取代受限的液相电解质,镁离子电池的发展将上升一个维度。本实验的研究是通过溶胶-凝胶法合成镁离子电池固体电解质MgZrNi_(1.5)(PO_4)_3,用Ni~(2+)取代原有固体电解质MgZrNi_(1.5)(PO_4)_3中一部分Zr~(4+),通过加入镍离子加大原有固体电解质的电导率,同时能加大电解质原有容量。通过实验证明,经过溶胶-凝胶法并进行离子取代,制备出的镁离子电池固体电解质电导率较原有固体电解质有较大提高,810℃温度下合成后的样品,电导率达到6.2×10~(-6) S/cm,比未经离子取代的固体电解质Mg_(0.5)Zr_2(PO_4)_3~([2]),电导率提高明显,为今后镁离子电池固体电解质的发展提供了重要参考。  相似文献   

16.
利用湿化学法,并采取逐步加热脱除沉淀中四氢呋喃分子的方式,制备具有高离子电导率和低活化能的纳米多孔β-Li 3PS 4固态电解质。利用同步热分析、X射线衍射、扫描电镜、拉曼光谱、氮气吸脱附和交流阻抗测试等手段研究不同处理阶段产物的形貌、结构和物相组成,并测试分析β-Li 3PS 4固态电解质的电化学性能。结果表明:采用该方法制备的纳米多孔β-Li 3PS 4固态电解质比表面积为 28.3m 2·g -1 ,平均孔径约23nm,电化学测试表明该电解质在20℃下的离子电导率为1.84×10 -4 S·cm -1 ,活化能为0.343eV,电子电导率为1.3×10 -8 S·cm -1 ,具有优异的电化学稳定性,与金属锂负极也具有良好的兼容性。  相似文献   

17.
共聚单体丙烯酸锂(AAL i)、丙烯腈(AN)、丙烯酸丁酯(BA)聚合的同时前驱体正硅酸乙酯(TEOS)水解缩合,在聚合物基体原位生成S iO2粒子,添加复盐L iX(L iC lO4-L iNO3-L iB r共熔盐)后制备了P(AAL i-AN-BA)/L iX/S iO2复合聚合物电解质,用IR和DTA-TG对其进行了表征,采用交流阻抗法研究了电解质膜的离子导电性能。结果表明,原位复合S iO2后体系的热稳定性提高,锂离子传输表观活化能Ea明显降低,电导率增大,当S iO2添加量为10%,L iX含量为75%时,体系的室温电导率达到最大值6.26×10-4S/cm(20℃)。  相似文献   

18.
低能离子注入对聚吡咯甲烯的改性   总被引:2,自引:0,他引:2  
利用低能氮离子对聚[(3乙酰基吡咯-2,5-二)对二甲氨基苯甲烯](Papdmabeq)薄膜进行了离子注入改性(注入能量为10~35 keV、剂量为1.2×1016~2.2×1017ions/cm2),研究了与材料三阶非线性极化率相关的物理量的变化规律.结果表明,氮离子注入使Papdmabeq薄膜的光电特性都发生了显著变化.适当能量和剂量的氮离子注入Papdmabeq薄膜后,薄膜中导电岛的数量增加,在聚合物分子链间形成了大的导电区域,导致其电导率显著提高.当注入离子的能量为25 keV、剂量为2.2×1017ionS/cm2时,Papdmabeq薄膜的电导率为9.2×10-4S/cm,比本征态Papdmabeq的电导率提高了5个数量级,且离子注入后薄膜电导率的环境稳定性优于经碘掺杂的Papdmabeq.氮离子注入可以使这种聚合物薄膜在可见光范围内的光吸收大幅度提高,使共轭程度得到显著增强.当注入离子的能量为35 keV、剂量为2.2×1017ions/cm2时,Papdmabeq的光学禁带宽度(Eg)由1.626 eV降低到1.340 eV.  相似文献   

19.
采用碳酸氢铵共沉淀法合成了Ce0.8Gd0.2O2-δ(GDC)纳米材料,并用交流阻抗谱技术研究其氧离子导电性能.XRD研究结果表明,经过600℃的热处理,共沉淀产物转变为具有单一立方萤石结构的CeO2超细粉体.在300MPa下将其压制成陶瓷坯体,分别在1150~1300℃下等温烧结4h.研究发现,1250℃烧结4h后,相对密度达到96.7%,其电导率在所有烧结样品中最高,600℃下氧离子电导率为1.1×10-2S/cm,在350~600℃温度范围内其氧离子电导活化能为0.63eV.对于碳酸氢铵共沉淀法制备的GDC纳米材料,1250℃致密化烧结是一个比较适宜的温度,烧结温度过高电导率反而下降.  相似文献   

20.
以聚氧化乙烯(PEO)为基体、埃洛石纳米管(HNTs)为填料,采用溶液浇铸法制备了系列聚氧化乙烯/高氯酸锂/埃洛石(PEO/LiClO_4/HNTs)固态聚合物电解质。系统研究了HNTs经表面改性前后对PEO结晶性能、锂盐解离度及离子电导率的影响机制。透射电子显微镜和比表面积表征结果表明,HNTs经硫酸处理后(A-HNTs),可在保持纳米管形貌的基础上使其比表面积从33.15 m~2/g增加到104.73 m~2/g; X射线衍射和差示扫描量热法分析结果表明,HNTs经表面改性处理,可增加分子间的相互作用,进一步降低PEO的结晶度;光学显微镜结果证明,HNTs的加入可使PEO球晶尺寸减小,表面改性处理可进一步使PEO结晶细化;傅里叶变换红外光谱和离子电导率测试结果表明,通过对HNTs纳米管表面基团的控制,可以提高LiClO_4解离程度,获得的电解质膜在40℃的离子电导率高达1.35×10~(-4) S/cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号