首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
木粉(WF)填充增强高密度聚乙烯(HDPE)复合材料具有良好的环境效益,少量引入短切碳纤维(SCF)可进一步提高其力学性能。为改善SCF与WF/HDPE复合材料中塑料基体的界面结合,提高SCF在WF/HDPE复合材料中的增强作用,采用气相、液相及气液双效氧化3种表面处理方式处理SCF,通过挤出工艺制备短切碳纤维增强木粉/高密度聚乙烯复合材料(SCF-WF/HDPE),探讨了不同处理方法对SCF-WF/HDPE复合材料性能的影响。SEM观察显示,表面处理增大了SCF的表面粗糙度,可提高其与基体的界面结合;动态力学性能分析证实碳纤维提高了存储模量。测试结果表明:表面处理过的短切碳纤维可使SCF-WF/HDPE复合材料的力学性能、热力学性能和蠕变性能均得到显著提高,其中气相表面处理的效果最好。对比WF/HDPE复合材料,SCF-WF/HDPE的拉伸强度提高了34.5%,弯曲强度提高了23%,冲击强度提高了54.7%。  相似文献   

2.
以多壁碳纳米管(MWNTs)为原料,采用不同改性方法制得了羧化碳纳米管(MWNTs-COOH)、共价功能化碳纳米管(MWNTs-NH2)、非共价功能化碳纳米管(MWNTs-PPA)和混杂功能化碳纳米管(MWNTs-COOH-PPA),将这4种改性碳纳米管按不同质量分数分别加入聚氨酯(PU)中制备了复合材料。使用万能材料试验机和热失重分析仪测试了复合材料的力学和热学性能,研究了碳纳米管对复合材料性能的影响。结果表明:通过在碳纳米管表面接枝少量的共价官能团防止非共价包覆的剥离,混杂功能化方法既能够改善碳纳米管在基体中的分散性,又能够保持其与基体界面间结合力,复合材料增强效果最明显。耐热性良好的碳纳米管的添加提高了PU基体的热分解温度,提高程度由于其功能化方式的不同而稍有差别。MWNTs-COOH-PPA/PU复合材料的力学性能最优,当碳纳米管含量(质量分数,下同)为0.3%时,其拉伸强度与纯PU相比提高104%,其热分解温度与MWNTs-COOH/PU相当,优于纯PU,但低于MWNT8-NH2/PU和MWNTs-PPA/PU。  相似文献   

3.
采用酸化处理的多壁碳纳米管(MWCNTs)增强双酚A型氰酸酯-酚醛型氰酸酯(BCE-NCE)树脂。通过SEM、TEM对MWCNTs/BCE-NCE树脂复合材料微观结构进行表征,利用DSC、DMA和TG/DTA对MWCNTs/BCE-NCE树脂复合材料热性能进行研究,采用电子拉力机对MWCNTs/BCE-NCE树脂复合材料力学性能进行测试,采用谐振腔法对MWCNTs/BCE-NCE树脂复合材料介电性能进行测试。结果表明,混酸处理过的MWCNTs在BCE-NCE树脂基体中的分散效果较好。MWCNTs对BCE-NCE树脂热力学性能影响不大,当MWCNTs添加量为0.8wt%时,BCE-NCE树脂玻璃化转变温度(Tg)从298℃下降到285℃,但仍维持较高水平。当MWCNTs添加量为0.6wt%时,MWCNTs/BCE-NCE树脂复合材料冲击强度为11.40 kJ/m2,提高了40.7%。MWCNTs的加入增加了BCE-NCE树脂介电常数和介电损耗,当MWCNTs添加量为0.8wt%、频率为1 GHz时,MWCNTs/BCE-NCE树脂复合材料介电常数为5.1,介电损耗为0.032。因此,MWCNTs/BCE-NCE树脂复合材料未来可在耐高温复合材料和电子等行业应用。  相似文献   

4.
采用扫描电镜观察、透射电镜观察、偏光显微镜观察、力学性能测试等方法,研究了橡纤混杂型PP/PET/MFC/HET原位成纤复合材料的微纤结构、断面形态和力学性能.结果表明:多功能增容剂MFC对体系起着反应性增容和橡胶增韧的双重功效,加入"适量"MFC,有利于形成精细化程度更高、承载能力更强的PET微纤;MFC、HET对复合材料断面形态的影响显著,断裂机理由典型的脆性断裂转变为韧性断裂;提高基体PP的熔体流动速率,复合材料力学性能的绝对值和相对于基体提高的幅度都增大,HFPP/PET/MFC/HET的NIIS、TYS和FM分别达到原料HFPP的3.49倍、99%和1.73倍,实现了PET微纤、MFC、HET的协同增强.  相似文献   

5.
为了提高聚乳酸(PLA)的韧性和刚性,扩大应用范围,分别以PLA为基体,微纤化纤维素(MFC)为增强材料,通过乳液共混法制备出MFC/PLA生物复合材料。采用扫描电镜、偏光显微镜和万能电子试验机等研究了复合材料的断面形貌、球晶形态和力学性能等。结果表明,通过乳液共混法可将MFC均匀分散在PLA基体中制备MFC/PLA生物复合材料;适量MFC可显著细化PLA的球晶尺寸,提高PLA的力学性能。当MFC质量分数为0.6%时,复合材料的拉伸强度、弹性模量、弯曲强度和缺口冲击强度分别较纯PLA提高了15.6%、21.1%、30.6%和53.6%。  相似文献   

6.
以SiC/Cu复合包裹粉体为增强相,采用真空搅拌铸造技术制备SiC/ADC12铝基复合材料,研究制备工艺条件对复合材料力学性能的影响,同时借助X射线衍射(XRD)和扫描电子显微镜(SEM)等测试分析手段对其物相结构进行表征。结果表明:SiC/Cu复合粉体显著改善了SiC颗粒在熔融铝合金基体中的润湿性和分散性。当搅拌温度为580℃,搅拌时间为30min,复合粉体添加量为4%(质量分数)时,复合材料获得最佳的力学性能,拉伸强度283MPa,硬度HB133,较基体合金分别提高24.1%和77.3%,较普通SiC增强复合材料提高15.5%和26.7%。  相似文献   

7.
通过表面接枝技术将流滴剂十八烷基二乙醇胺丙烯酸单酯(AAM)接枝到高岭土(Ka)表面,制得Ka与AAM接枝物(Ka-g-AAM);将Ka-g-AAM与线性低密度聚乙烯(LLDPE)熔融挤出,制备了Ka-g-AAM/LLDPE复合材料;利用FTIR、SEM、DSC和加速流滴仪等对Ka-g-AAM/LLDPE复合材料的结构和性能进行了表征。结果表明,与AAM/LLDPE和Ka-AAM/LLDPE复合材料相比,Ka-g-AAM/LLDPE复合材料中LLDPE的熔融温度、结晶温度和力学性能变化不大;Ka-g-AAM/LLDPE复合材料薄膜在60℃加速流滴期达23天,比AAM/LLDPE复合材料延长了4天。   相似文献   

8.
樊星  陈俊林  王凯  肇研 《复合材料学报》2018,35(9):2397-2404
利用纳米SiO2改性聚苯硫醚(PPS)树脂及玻璃纤维(GF)/PPS复合材料,探究纳米SiO2对PPS树脂及GF/PPS复合材料性能的影响规律。采用熔融共混工艺制备纳米SiO2/PPS树脂,并采用热压成型方法制备纳米SiO2-GF/PPS复合材料,利用SEM、DSC、DMA和力学测试表征不同纳米SiO2含量的SiO2/PPS和SiO2-GF/PPS复合材料。结果表明:纳米SiO2通过熔融共混工艺能够均匀分散在PPS基体中,并提高PPS结晶度和弯曲性能。添加1wt%纳米SiO2有效提高了GF/PPS复合材料的力学性能:层间剪切强度提高49.4%,弯曲强度提高30.6%,弯曲模量提高14.6%。纳米SiO2的添加可以提高GF/PPS复合材料的玻璃化转变温度,同时纳米SiO2能够改善树脂基体韧性并阻碍裂纹的扩展。  相似文献   

9.
以杨木粉为填充材料,聚氯乙烯(PVC)为基体材料,添加竹炭和壳聚糖,采用挤出成型制备竹炭和壳聚糖改性木粉/PVC木塑复合材料,采用SEM观察复合材料表面微观形貌,采用综合热分析仪分析复合材料的热稳定性,采用FTIR分析其官能团变化,测试了木粉/PVC木塑复合材料的力学性能。结果表明:复合添加竹炭和壳聚糖可较好地改善木粉和PVC的界面作用力和界面相容性,提高复合材料的力学性能,其拉伸强度、冲击强度、弯曲强度和弯曲模量分别比未添加增加14.6%、28.8%、11.1%和4.85%,且复合材料的微观界面缺陷较少;竹炭可提高复合材料的热稳定性,复合添加竹炭和壳聚糖可增加复合材料中羟基、氨基和亚甲基的数量,减弱碳氯键的结合强度,从而增强复合材料中木粉和PVC的界面结合力。   相似文献   

10.
采用共沉淀法制备纳米羟基磷灰石(HA),并用硅烷偶联剂KH560对其进行表面改性;然后,以聚醚醚酮(PEEK)为基体,通过热压成型工艺制备原始HA/PEEK与改性HA/PEEK复合材料。考察两种HA的引入对复合材料结构、力学性能和摩擦性能的影响。利用XRD、FTIR、FESEM、拉伸测试、DMA和摩擦测试对两种HA/PEEK复合材料的结构和性能进行了表征。结果表明:HA表面引入了硅烷偶联剂KH560;改性前后HA的晶型结构没有明显改变;两种HA对PEEK基体的结晶结构也没有产生影响;改性HA在PEEK基体中分散均匀;与纯PEEK相比,10wt%改性HA/PEEK复合材料的储能模量增加了55.56%,玻璃化温度增加了3.6℃,磨痕深度降低了31.1%,有效改善了复合材料的热力学性能和摩擦性能;改性HA/PEEK拉伸强度为68.33 MPa,能够满足人骨的强度要求。  相似文献   

11.
采用溶液流延法制备了埃洛石纳米管(HNTs)/聚乙烯醇(PVA)-淀粉复合膜,并利用SEM、XRD、DMA、TGA等分析测试手段研究了该复合膜的结构与性能。结果表明:随着HNTs含量增加,HNTs/PVA-淀粉复合膜的力学性能、热稳定性、耐水性能和紫外屏蔽性能均有提高。当HNTs与PVA-淀粉质量比为10%时,力学性能达到最佳,拉伸强度提高了22%。扫描电镜分析表明:HNTs能够以纳米尺度均匀分散于HNTs/PVA-淀粉复合膜中,且以单管状分布,与PVA-淀粉基体界面结合较好。动态力学性能分析表明:HNTs的加入对HNTs/PVA-淀粉复合膜的玻璃化转变温度影响不大,复合膜的储能模量升高,力学损耗下降。透光率测试结果表明:HNTs对HNTs/PVA-淀粉复合膜的透明性影响不大,而在紫外光区域(200~400nm),透光率随HNTs量的增加而下降。  相似文献   

12.
This investigation concerns about study the effect of natural fiber on high performance composite. Effect of addition microfibrillated cellulose (MFC) as natural fiber to plain woven carbon fiber reinforced plastic (CF) reinforced epoxy on mechanical and thermal properties has been investigated. CF/epoxy composites with addition 0.5, 1 and 2 wt.% of MFC were characterized by different techniques, namely tensile, DMA, fracture toughness (mode I) test and SEM. The results reveal that at 2 wt.% of MFC, initiation and propagation interlaminar fracture toughness in mode I improved significantly by 80% and 44% respectively. Although there is slight tendency to increase tensile strength and Young’s modulus with addition MFC up to 2%, it is still not significant with those low contents of MFC. With addition 2 wt.% MFC, the glass transition temperature increased by about 12 °C compared to neat CF/epoxy composite indicating better heat resistance with addition of MFC.  相似文献   

13.
This work reports the preparation of MFC–PVA composite films, and the thermal and mechanical properties of these films. Microfibrillated cellulose (MFC), which was separated from kraft pulp by a mechanical process, was used as the reinforcement in polyvinyl alcohol (PVA) matrix. This MFC reinforcement has an interconnected web-like structure with fibrils having a diameter in the range of 10–100 nm, as observed by TEM. MFC–PVA composite films were created by casting from a water suspension to produce a homogeneous dispersion of MFC in the polymer matrix. DMA shows an increase of the storage modulus in the glassy state with increasing MFC content, but a more significant increase in modulus is detectable above the glass transition temperature. There is a steady increase in both the modulus and strength of the composite films until a plateau is reached at 10 wt% MFC. The thermal stability of the PVA composite films is slightly increased with the addition of MFC.

As a result of this research, it has been shown that MFC is an excellent reinforcement comparable to cellulose nanowhiskers. Furthermore, by combining MFC with PVA in addition to good mechanical properties, this composite has good chemical resistance and biodegradability. The water soluble characteristics of PVA combined with a water dispersion of MFC are also easily processable.  相似文献   


14.
利用原位聚合及表面氟化的方法制备了埃洛石纳米管/水性聚氨酯(HNTs/WPU)复合膜,并考察氨基化埃洛石纳米管(AHNTs)的含量及十七氟癸基三甲氧基硅烷(FAS)氟化对AHNTs/WPU复合膜性能的影响。结果表明:随着AHNTs与WPU的质量比增大,AHNTs/WPU复合膜的力学性能及耐热性呈先升高后降低的趋势,耐水性得到改善。当AHNTs与WPU的质量比为1.5%时,AHNTs/WPU复合膜具有较好的综合性能。AHNTs/WPU复合膜的拉伸强度、断裂伸长率及初始分解温度(Td5)与纯WPU膜相比分别提高了50%、35%及9℃,复合膜的吸水率降低到5.8%,水接触角提高到95.1°。AHNTs/WPU复合膜经表面氟化处理后,水接触角进一步增大到114.5°,呈现出疏水性,表面氟化处理对复合膜的力学性能及吸水率也有一定的促进作用。   相似文献   

15.
聚乙烯/无机纳米复合材料的抗紫外老化性能   总被引:5,自引:0,他引:5  
研究了茂金属聚乙烯(mPE)/纳米TiO2、线形低密度聚乙烯(LLDPE)/纳米ZnO、LLDPE/纳米CaCO3复合材料经过不同时间紫外辐照后的力学性能和热学性能,用傅立叶红外光谱测定了紫外辐照后的基团变化。结果表明,纳米TiO2和ZnO对聚乙烯抗紫外老化性能有比较明显的提升,为聚乙烯纳米复合材料的制备、加工和应用提供了理论依据。  相似文献   

16.
In the present investigation, dynamic mechanical analysis (DMA), thermo gravimetric analysis (TGA), tensile tests, fatigue tests and the single edge notch tensile (SENT) tests were performed on unfilled, 1, 2 and 3 wt.% vapor grown carbon nanofiber (CNF) filled SC-15 epoxy to identify the loading effect on thermal and mechanical properties of the composites. DMA studies revealed that filling the 3% carbon nanofiber into epoxy can produce 65% enhancement in storage modulus at room temperature and 6 °C increase in T g. However, TGA results show that thermal stability of composite is insensitive to the CNF content. Tensile tests were carried out at the strain rate range from 0.02 min−1 to 2 min−1. Results show that CNF/epoxy are strain rate sensitive materials, the modulus and tensile strength increased with increasing of strain rate. Experimental results also indicate that modulus of the nanophased epoxy increases continuously with increasing CNF content. But the 2% CNF infusion system exhibit maximum enhancement in tensile strength, fatigue performance and fracture toughness as compared with other system.  相似文献   

17.
LLDPE/EVA/CB导电复合材料辐射交联效应研究   总被引:5,自引:0,他引:5  
研究了辐射交联及其剂量不同对LLDPE/EVA/CB导电复合材料PTC特性及电致发热特性的影响,并借助DSC(示差扫描量热分析)、TGA(热失重法)、DMA(动态机械热分析法)及SEM(扫描电镜法)和TEM(透射电镜法)研究了LLDPE/EVA/CB导电复合材料结构与性能间的关系。结果表明,辐射交联可明显改善高聚物基体及与炭黑粒子两相界面,消除高温下产生的NTC现象,并可提高元件的电致发热稳定性。  相似文献   

18.
The yield behaviour of dimer acid-based polyamides (DAPA) and DAPA reinforced with cellulose fibres (CF) was examined in this study. Both dynamic mechanical analysis (DMA) and tensile tests were used to follow the effect of strain rate or frequency, temperature and filler content on the transitions temperatures, the storage modulus and the yield stresses. The DMA results show that the storage modulus increases with increasing CF concentration. The tensile tests reveal that the yield stress is strain rate, temperature and CF concentration sensitive. Both activation enthalpy and activation volume calculated by the Eyring’s model reveal a slight increase of activation energy with increasing filler content and a decrease of the activation volume. A micromechanically-model was used to predict the yield stress of both DAPA and DAPA/cellulose composites. The model predictions of the yield stress are in good agreement with the experimental data.  相似文献   

19.
通过改变预制体结构衬纱取向的方法制备了几种含不同剪切角的纬编双轴向多层衬纱(Multilayered biaxial weft knitted,MBWK)织物增强复合材料。基于Arrhenius模型和Ozawa法设计了热氧老化试验,采用力学性能测试、DSC、FTIR和DMA测试对老化前后的试样热-物理性能进行了表征。实验结果表明:预制体的纱线剪切角不同,其复合材料受热氧老化后力学性能的保留率也显著不同,由于乙烯基酯树脂在热氧老化环境中会发生后固化现象,因此复合材料的弯曲模量在老化过程中呈现先增加后下降的趋势,而拉伸性能则受到增强体结构的影响,纤维/基体界面的结合力退化使拉伸模量在老化过程中持续下降;随着老化时间的延长,树脂的固化度逐渐增加,玻璃化转变温度Tg逐渐升高,储能模量峰值在老化初期由于分子链交联上升,老化后期分子链断裂占据主导作用致使峰值逐渐下降。  相似文献   

20.
为充分利用红枣精深加工产生的废弃物,以枣核(JP)和低密度聚乙烯(LLDPE)为主要材料,采用注塑成型法制备JP/LLDPE复合材料,并对其静态力学性能(拉伸、弯曲和冲击)和动态力学性能(动态黏弹性、蠕变行为和应力松弛行为)进行系统测试分析.静态力学性能分析表明,随JP含量的增加,JP/LLDPE复合材料的拉伸强度和冲...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号