首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
通过浸渍法制备了密胺海绵(MS)/导电炭黑-硼酸盐(CB@B)复合物,并进一步真空灌注硅橡胶(SR)后制备了MS/CB@B/SR复合材料。使用XRD、SEM对复合材料的物相、微观结构进行表征并测试了其导电与介电性能、压敏特性和吸波性能。研究发现,CB@B复合物利用MS模板在复合材料内部构建了三维逾渗网络,其导电逾渗阈值为1.48%(体积分数),CB与B对提高复合材料性能具有显著的协同作用。随着CB浓度提高,复合材料的导电性和介电常数逐步提高,当CB浓度为14 mg/mL时,复合材料的体积电阻率最低可达到6.7×10~4Ω·cm,介电常数在1 kHz时高达1.67×10~4,当样品厚度为3 mm时,在30.97 GHz处出现最低反射率(RL=-33.17 dB),吸波带宽(RL-10 dB)为5.38 GHz。当CB浓度为10 mg/mL时,复合材料的电阻和介电常数还表现出较高的压缩应变灵敏度。  相似文献   

2.
功能性石墨烯改善聚合物介电性能的研究进展   总被引:1,自引:1,他引:0  
目的对近年来使用改性石墨烯改善聚合物基复合材料介电性能的研究进行总结,指出今后的发展方向。方法总结通过石墨烯改性来改善其在聚合物的分散性和提高聚合物基石墨烯复合材料介电性能的方法;对比石墨烯/聚合物复合材料的复合工艺对其介电常数和介电损耗数值的变化,总结不同的改性方法对复合材料介电性能的影响。结论石墨烯作为一种性能较优的导电填料对材料介电性能影响巨大,然而,由于其物理分散性不好,极大地阻碍了石墨烯改性聚合物基高介电复合材料的发展。通过对石墨烯进行功能化改性修饰可以有效提高聚合物基复合材料的介电性能,这种材料可作为电活性聚合物,在很多需要高介电常数的电介质材料领域,如超级电容器、感应器、驱动器、智能包装和机器人等方面得到应用。  相似文献   

3.
为了制备柔性较好的聚合物基压阻材料,利用熔融共混法制备了炭黑/聚丙烯-聚(苯乙烯-乙烯/丁烯-苯乙烯)(CB/PP-SEBS)复合材料,并研究了CB含量对CB/PP-SEBS复合材料介电性能和压阻性能的影响。结果表明:随着CB含量的增加,CB/PP-SEBS复合材料的介电常数、介电损耗及电导率均提高;CB/PP-SEBS复合材料发生导电逾渗时,CB的含量为12.2wt%;在CB/PP-SEBS复合材料发生弹性形变时,由于外力破坏了CB的导电网络,复合材料的电阻随着应变的增大而增大;循环压阻测试结果显示,在弹性变形区CB/PP-SEBS复合材料的电阻随着应变呈现周期性变化。研究结果可为制备具有稳定电阻变化的聚合物基压阻材料提供借鉴。  相似文献   

4.
碳纳米管/丁苯橡胶复合材料的电学性能   总被引:4,自引:1,他引:3       下载免费PDF全文
采用喷雾干燥法可制备不同配比的碳纳米管(Carbon nanotubes,CNTs)/粉末丁苯橡胶复合材料,观察CNTs在橡胶基体中的分散情况,检测复合材料的导电性能及介电性能,并进行了简要的理论分析。结果表明:CNTs在橡胶基体中获得了充分均匀的分散,有利于CNTs改性补强作用的发挥。与纯胶样品及填充炭黑(Carbon black,CB)样品相比, 填充CNTs样品在8~18GHz下具有较高的介电常数及低介电损耗。随着CNTs加入量的增加,CNTs/粉末丁苯橡胶复合材料的电导率逐渐升高,当CNTs加入量为60phr(per hundred rubber)时,与纯胶样品及添加60phr CB样品相比,电导率提高近10个数量级;复合材料内部导电同时存在隧道导电机制和渗逾导电机制。采用喷雾干燥法制备的CNTs/粉末丁苯橡胶复合材料,将是一种综合性能良好的新型纳米复合材料,有望在抗静电橡胶、电磁屏蔽及介电材料等领域获得应用。   相似文献   

5.
以聚偏氟乙烯(PVDF)为聚合物基体,钛酸锶钡(BST)为陶瓷相,成本低廉的导电炭黑(CB)为导电相。采用流延加低温热处理的方法制备了一系列高介电柔性复合薄膜。利用阻抗分析仪对薄膜的介电性进行了测试,结果表明,炭黑的填充能有效提高复合材料的介电性能,当体积分数接近渗流阈值6.2%时,CB/BST/PVDF复合材料的介电常数、介质损耗、电导率急剧增加。结合经典渗流理论研究了材料在渗流转变时介电性变化特征及微观机理,利用微电容模型、界面极化理论对这一现象进行解释。  相似文献   

6.
石墨烯微片对尼龙6的改性研究   总被引:1,自引:0,他引:1  
张灵英  陈国华 《材料导报》2011,25(14):85-88,92
采用共混法制备尼龙6/石墨烯微片(GNPs)复合材料,研究了其导电性能、摩擦磨损性能及力学性能,并利用扫描电镜观察分析了材料磨损表面形貌,同时将其结果与炭黑(CB)体系进行了比较。结果表明,PA6/GPNs的渗滤阀值为15%(质量分数,下同),远低于PA6/CB的30%;GNPs的加入降低了材料的摩擦系数和磨损率,并在其含量为10%时达到最佳,分别降低30%和50%;提高了材料的拉伸强度、断裂伸长率、硬度,但冲击强度下降。CB的加入提高了材料的耐磨性、硬度,但摩擦性能、拉伸强度、断裂伸长率和冲击强度均下降。  相似文献   

7.
通过熔融共混法制备了两种不同型号石墨烯微片(GNPs)填加的GNPs/聚丙烯(PP)导热复合材料,研究了GNPs型号(KNG180,KNG150)和含量对其导热性能、密度、结晶性能和热稳定性能的影响。结果表明,KNG180 GNPs/PP复合材料密度高于KNG150 GNPs/PP,同时KNG180对提高聚丙烯结晶度的效果优于KNG150。随着石墨烯微片含量的增加,两种复合材料导热系数均明显增大,而且KNG180填充的复合材料导热性能明显优于KNG150;当KNG180的添加量为60%(质量分数)时,GNPs/PP复合材料的导热系数从纯聚丙烯的0.087 W/(m·K)提高到1.32 W/(m·K),提高了14倍多。石墨烯微片的加入显著提高了聚丙烯的热稳定性,当KNG180或KNG150的质量分数为10%时,聚丙烯达到最大热失重速率时的温度从345.1 ℃分别提高到374.6 ℃和397.9 ℃,但是当石墨烯微片超过一定含量时,热稳定性会下降。  相似文献   

8.
采用机械合金化与电场压力激活辅助烧结工艺相结合的方式,分别制备纯Al和GNPs/Al复合材料,探究粉体石墨烯对铝基复合材料微观结构和性能的影响。结果表明:通过优化烧结工艺有效地抑制化合物Al_4C_3在GNPs/Al复合材料中的形成,提高石墨烯与Al基体的界面结合强度。石墨烯添加量为0.5wt.%时,在Al基体晶界处能够均匀的分散,由于石墨烯与Al基体有良好的界面润湿性,促进声子在基体材料中的移动,降低材料的界面热阻,在GNPs/Al复合材料表面形成导电网络,提高电子的迁移率和平均自由程,使GNPs/Al复合材料的热导率和电导率分别提升7.1%和4%;添加石墨烯能改变Al基体材料的晶体结构,在石墨烯周围形成晶格畸变的应力场,该应力场与位错应力场产生交互作用,使位错运动受阻,GNPs/Al复合材料的强度和硬度分别提升30.6%和44%;石墨烯能降低基体材料界面电容的介电损耗,在Al基体材料表面形成致密平整的膜层,提高GNPs/Al复合材料的电荷传递电阻,降低材料表面在电化学腐蚀过程中的弥散效应,使GNPs/Al复合材料耐腐蚀性能提高31%。石墨烯含量超过0.5 wt.%时,团聚在基体晶界的石墨烯,降低复合材料的界面结合强度,使GNPs/Al复合材料导带中的能带宽度变窄,电子的局域性增强,导致GNPs/Al复合材料的性能下降。综上所述,粉体石墨烯的最佳添加量为0.5wt.%。  相似文献   

9.
采用熔体共混法制备了炭黑(CB)/高密度聚乙烯(HDPE)导电复合材料。研究了硝酸氧化对CB/HDPE导电复合材料正温度系数(PTC)、负温度系数(NTC)效应和电性能稳定性的影响。结果表明,填充氧化炭黑(CB-O)提高了CB-O/HDPE体系的电性能稳定性和PTC强度,部分消除或降低了复合材料的NTC效应。而CB-O/HDPE体系的室温电阻率比CB/HDPE体系只增加了0.3个数量级,但比经过交联处理的CB/HDPE(CB/crosslinked-HDPE)体系降低了1个数量级。CB-O/HDPE复合材料性能的改善主要是由于CB经氧化后,表面羧基、羟基等极性基团含量增加,抑制了CB粒子高温时的自团聚作用,减弱了体系的NTC效应;同时CB表面微晶晶界处导电性较差区域的减少,提高了CB的导电性,,并且CB-O表面大量孔洞和裂缝的形成,增强了CB-O与HDPE的物理吸附作用,提高了复合材料的电性能稳定性。   相似文献   

10.
以半胱氨酸为改性剂,对纳米Ag进行表面修饰,制备了系列改性纳米Ag/PVDF复合材料;通过对复合材料的介电性能进行研究,结果表明,改性后纳米Ag在PVDF基体中的填充量能够得到迅速提高,体积分数可达到25%以上而不发生导电现象;当改性纳米Ag/PVDF复合材料中纳米Ag体积含量达到20%时,复合材料的相对介电常数达到了115,介电损耗保持在0.09以下;通过扫描电子显微镜、傅立叶红外光谱和X射线衍射图谱分析表明,这种高介电常数,低介电损耗的性质来源于纳米Ag在聚合物基体中分散性的提高,改性纳米Ag表面连接的半胱氨酸改善了纳米Ag粒子与PVDF基体的界面相容性,提高了PVDF结晶体和纳米Ag在基体中的分散均一性,降低了聚合物基体内纳米Ag团聚和导电网络的形成几率,有效改善了金属/聚合物介电材料的加工条件,提高了聚合物的介电性能。  相似文献   

11.
研发制备低成本、少缺陷及高效率的石墨烯纳米片杂化阻燃剂对实现复合材料多功能性具有重要意义。以三聚氰胺为助剥离剂将微粉石墨(GRA)经机械球磨后与磷酸液相反应得到一种阻燃导热的石墨烯纳米片杂化三聚氰胺磷酸盐(GMP),在表征GMP形貌、结构、组成和热稳定性的基础上,研究了添加GMP环氧树脂(EP)复合材料的阻燃、热分解和导热性能。GMP的热失重分析结果表明:与三聚氰胺磷酸盐(MP)相比,初始分解温度提升了29.3℃,与环氧树脂的热分解温度更匹配,有助于提高阻燃效率。氧指数仪、锥形量热仪和导热性能研究表明,GMP添加30wt%时,EP复合材料的极限氧指数达到了30.4%,UL 94垂直燃烧达到V-0级,峰值热释放速率(PHRR)和峰值烟释放速率(PSPR)分别下降69%和74.0%;导热系数提升至2.10 W·m-1·K-1,相对于EP提升了708%。这是由于GMP中石墨烯纳米片(GNPs)与MP的相互作用促进了EP形成了致密的膨胀炭层,有效提高了EP复合材料的阻燃性;随着GMP添加量的增加,GNPs和石墨微片传热通道的形成改善了EP复合材料的导...  相似文献   

12.
为在较低的导热填料含量下提高环氧树脂(EP)的热导率,通过溶液法制备了石墨烯纳米片/(酚酞聚芳醚酮-EP) (GNP/(PEK-C-EP))复合材料。基于接触角测量计算并预测了GNP的选择性分布,并通过SEM和激光闪光法研究了GNP和PEK-C含量对GNP/(PEK-C-EP)复合材料的微观结构和热导率的影响。结果表明,当PEK-C的含量为20wt%时,GNP选择性分布在PEK-C中,形成了双逾渗结构的GNP/(PEK-C-EP)复合材料,从而构建了连续导热通道。当GNP含量为1wt%时,GNP/EP复合材料导热率最高达0.375 W(m·K)?1。当GNP含量为0.5wt%时,GNP/(PEK-C-EP)复合材料导热率最高达0.371 W(m·K)?1,较GNP含量为0.5wt%的GNP/EP复合材料热导率高48%,与GNP含量为1wt%的GNP/EP复合材料的热导率基本相同。表明GNP/(PEK-C-EP)复合材料的填料量减少了50%,利用双逾渗效应可以有效减少导热填料用量。此外,比较了纯EP和GNP/(PEK-C-EP)复合材料的玻璃化转变温度、热稳定性和热膨胀系数,结果表明,GNP/(PEK-C-EP)复合材料的热性能优于纯EP。   相似文献   

13.
采用液相还原法,制备了BN表面沉积纳米Sn粒子(BN-Sn NPs)杂化材料,用于环氧树脂(EP)的导热绝缘填料。BN-Sn NPs表面纳米Sn的粒径和熔点分别为10~30 nm 和166.5~195.3℃。BN表面沉积纳米Sn后,粉体Zeta电位及压片的导热系数增加,EP滴在压片表面的接触角降低。在BN-Sn NPs/EP复合材料固化过程中,BN-Sn NPs表面纳米Sn熔融烧结,有利于填料相互桥联在一起,降低接触热阻,并改善界面性能,从而提高BN-Sn NPs/EP复合材料的导热系数。当填料体积含量为30vol%时,BN-Sn NPs/EP复合材料的导热系数达1.61 W(m·K)?1,比未改性BN/EP复合材料的导热系数(1.08 W(m·K)?1)提高了近50%。Monte Carlo法模拟表明,BN和BN-Sn NPs在EP基体中的接触热阻(Rc)分别为6.1×106 K·W?1和3.7×106 K·W?1。与未改性BN/EP复合材料相比,BN-Sn NPs/EP复合材料的介质损耗增加,介电强度及体积电阻率降低,但仍具有良好电绝缘性能。   相似文献   

14.
通过溶液混合法制备了凹凸棒(ATT)/炭黑(CB)/环氧树脂(EP)复合材料。使用紫外可见光光谱仪(UV-Vis)和Zeta电位测试仪对CB和(或)ATT在丙酮溶剂中的分散稳定性进行了研究。使用扫描电子显微镜(SEM)和电阻仪分别研究了不同填料比例以及含量对EP复合材料微观结构和电阻率的影响。结果表明,ATT的加入可以有效增强CB在溶剂中的分散稳定性并促进EP基体中导电网络的形成。当CB与ATT质量比为5∶1时,复合材料的电阻率比不添加ATT时下降了2个数量级;其渗流阈值(1%)(质量分数,下同)小于具有相同填料含量的CB/EP复合材料(1.8%)。最后探讨了ATT对CB/EP复合材料电性能影响的可能机理。  相似文献   

15.
Electrical percolating composites of polypropylene (PP) filled with five different graphene nanoplatelet (GNP) fillers and their hybrid systems were prepared using melt blending. The effect of GNP size and their hybrid system on the conductive network formation is investigated. The formation of a conductive network can be affected by the structure and morphology of GNPs of different sizes. The GNPs with a larger diameter and smaller thickness are beneficial to produce a conductive network. The conductivity of the PP/GNP composite depends on the aspect ratio of the GNPs when the content exceeds the percolation threshold. However, when the GNP content is near the percolation threshold, both diameter and dispersion of the GNPs can affect the conductivity significantly, and electron tunneling theory should be taken in account. The highest electrical conductivity was obtained for a PP/large-diameter GNPs/medium-diameter GNPs hybrid system. To explain the hybrid system, an “island-bridge”-structured conductive network is proposed. The better conducting network may be due to scattered “islands” that connect with each other via a long “bridge.” This bridge links the islands for better charge transport across the GNPs and the obstruction of PP matrix, which enables the formation of a better conducting network. Even though GNPs with small diameter show perfect dispersion, they contribute less to the formation of a conductive network.  相似文献   

16.
孙琦  周宏  张航  刘国隆 《复合材料学报》2020,37(5):1056-1062
分别用硅烷偶联剂KH560改性凹凸棒土(Attapulgite,ATP)和氧化石墨烯(Graphene oxide,GO),并将其复合制备ATP-GO复合物。以环氧树脂(Epoxy,EP)为基体,采用原位聚合法制备ATP-GO/EP复合材料。采用SEM和FTIR对ATP-GO复合物的形貌和化学结构进行表征。结果表明:ATP与GO成功键合并附着在GO表面;ATP-GO的加入,提高了EP的冲击强度、弯曲强度和热稳定性,降低了其介电常数和介电损耗。3wt%ATP-0.5wt%GO/EP复合材料的弯曲强度和冲击强度分别为138.58 MPa和20.80 kJ/m2,比纯EP分别提高了75.5%和351.6%,而其介电常数和介电损耗分别低至3.36和0.0118,比纯EP降低了7.7%和27.3%。   相似文献   

17.
刘国隆  周宏  张宏达  葛静 《复合材料学报》2021,38(10):3237-3244
采用水热合成法制备拟薄水铝石(AlOOH)纳米棒,以3-氨基丙基三乙氧基硅烷(APTES)为表面改性剂,制得mAlOOH,以环氧树脂(Epoxy,EP)为基体,制备AlOOH/EP和mAlOOH/EP复合材料。研究AlOOH和mAlOOH的填充量对AlOOH/EP及mAlOOH/EP复合材料性能的影响。结果表明,mAlOOH明显提高了mAlOOH/EP复合材料的力学性能。mAlOOH的填充量为4wt%时,mAlOOH/EP复合材料的冲击强度和弯曲强度分别比聚合物基体分别提高了259%和44%;填充量不超过5wt%时,mAlOOH/EP的介电常数与介电损耗均略低于纯环氧树脂。当添加量为3wt%时,mAlOOH/EP具有最低的介电常数和介电损耗及最高的玻璃化转变温度(123℃)。   相似文献   

18.
随着电力电子器件封装密度提高, 开发导热性能优异的热界面材料受到了广泛关注。绝大多数传统导热填料的热导率较低, 因此合成新型高导热填料是提高热界面材料导热性能的重要途径。本研究通过简单的熔盐法合成了高导热的磷化硼(BP)颗粒, 与氮化硼(h-BN)混合并通过搅拌和浇注的方法填充到环氧树脂(EP)基体中制备得到树脂基复合材料(BP-BN/EP)。实验结果表明:采用三盐法(NaCl : KCl : LiCl)合成的BP产率最高达到74%, 相对于单盐法(41%)和双盐法(39%)分别提高了33%和35%。对于BP-BN/EP复合材料, 复合材料的微结构显示BP和BN颗粒均匀分布在环氧树脂基体。当混合填料体积分数为30%时, 该复合材料的热导率达到1.81 W•m-1•K-1, 是纯树脂热导率(0.21 W•m-1•K-1)的8.6倍, 这与BP颗粒作为桥梁连接相邻BN颗粒形成导热网络有关。除此以外, 相较于不含BP的复合材料(SBN-BN/EP), BP-BN/EP复合材料展现出更加优异的热导率、热稳定性和较好的热力学性能。因此, 熔盐法合成的BP在热管理领域具有较大的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号