首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
王小红  刘豪  蒋焰罡  李子硕  苏鹏  龙武  王水波 《表面技术》2022,51(1):86-92, 104
目的 探究纳米TiO2颗粒对Ni-W-P镀层组织结构、耐蚀性与耐磨性能的影响,提高2024铝合金管材的耐蚀性。方法 使用化学镀的方法在2024铝合金表面制备了Ni-W-P/TiO2纳米复合镀层,通过SEM、EDS、XRD表征了镀层的表面形貌、表面元素分布以及镀层物相。对比了传统Ni-W-P镀层与所制备Ni-W-P/TiO2纳米复合镀层的显微硬度与耐磨性。结果 加入纳米TiO2颗粒后,镀层表面变得更加致密,晶粒得到细化。EDS结果表明,纳米TiO2颗粒在镀层中分布均匀。物相分析表明,镀层为晶态结构,加入纳米TiO2颗粒后,镀层平均晶粒尺寸为9.706 nm,比Ni-W-P镀层的晶粒尺寸减小了0.612 nm。失重试验表明,Ni-W-P/TiO2纳米复合镀层在Cl为2×105 mg/L的地层水中具有较强的耐蚀性,腐蚀速率为0.1062 g/(m2·h),与Ni-W-P镀层...  相似文献   

2.
赵丹  侯金明  马青青  崔睿  王亮  金洁 《表面技术》2020,49(6):284-289
目的研究稀土铈对Ni-P镀层表面组织、沉积速率和耐腐蚀性能的影响,提高沉积速率,改善镀层表面质量,进而提高镀层的耐腐蚀性能。方法采用酸式化学镀方法在50钢基体表面制备了添加稀土铈的Ni-P合金镀层,研究稀土铈的添加量对Ni-P合金镀层表面组织形貌和性能的影响。采用金相显微镜观察镀层表面组织形貌,参照GB/T13913—2008计算镀层沉积速率;使用HV-1000Z型显微硬度计测定合金镀层的硬度,采用均匀腐蚀全浸试验法测试合金镀层在5%NaCl溶液和10%NaOH溶液中的耐蚀性能。结果稀土铈的添加量为40 mg/L时得到的合金镀层组织细小、均匀、平整、致密,沉积速率达到最大值10.4 mg/(cm2·h)。随着稀土铈添加量的增加,镀层硬度明显增大,在稀土铈质量浓度为60 mg/L时,最大硬度值达到487.2HV,硬度提高了13.5%。Ni-P合金镀层在5%NaCl和10%NaOH溶液中耐腐蚀实验结果表明,未添加铈的镀层腐蚀速率最大,添加稀土铈的镀层腐蚀速率呈现先降低后增加的趋势,稀土铈质量浓度为40 mg/L时,镀层的腐蚀速率最低。结论稀土铈可以明显改善镀层表面质量,提高镀层沉积速率、硬度和耐腐蚀性能。  相似文献   

3.
目的为延长油墨刮刀的使用寿命,提高刮刀的耐蚀性能。方法采用电刷镀方法在高碳钢基体表面制备了Ni-P镀层和共沉积纳米Al_2O_3的Ni-P/Al_2O_3复合镀层。通过动电位极化曲线、腐蚀失重曲线和交流阻抗谱等方法研究了Ni-P镀层和Ni-P/Al_2O_3复合镀层在3.5%NaCl溶液中的腐蚀行为,采用扫描电子显微镜和能谱仪对两种镀层腐蚀前后的显微组织和成分进行分析。结果纳米Al_2O_3在Ni-P镀层中的共沉积,使镀层的腐蚀电位由-0.318 V正移到-0.237 V,自腐蚀电流密度由6.04μA下降到5.75μA,这是因为纳米Al_2O_3标准电位比Ni更正,在镀层中的均匀分布能使腐蚀电位正移,在腐蚀过程中形成Ni-P合金作为阳极、Al_2O_3粒子作为阴极的腐蚀微电池,促进阳极极化。共沉积纳米Al_2O_3后,Ni-P/Al_2O_3复合镀层的电化学反应电阻Rct值由1.066×104?·cm~2增大至2.864×104?·cm~2,双层电容Cd I值由43.45μF/cm~2下降到27.36μF/cm~2。与Ni-P镀层相比,Ni-P/Al_2O_3复合镀层表面结构更致密,缺陷更少,在腐蚀过程中,P和O元素在Ni-P镀层表面富集形成钝化膜,抑制腐蚀的进行。结论共沉积Al_2O_3纳米颗粒能有效改善Ni-P镀层的耐蚀性能。  相似文献   

4.
《铸造技术》2016,(11):2362-2365
对Mg-9Al-1Zn镁合金进行了碱洗除油、无铬处理和化学镀Ni-W-P处理,研究了不同表面镀层的显微形貌、孔隙率、物相组成和耐腐蚀性能等。结果表明,当镀液中Na2CO3浓度为20 g/L时,Mg-Al-Zn合金表面镀层较为平整,镀层团簇晶粒分布均匀,各个团簇倾向于垂直表面方向生长;沉积时间为1 h的Ni-W-P镀层与基体结合良好、镀层较为致密,Ni、W和P元素在界面结合处有明显扩散和浓度梯度;Mg-9Al-1Zn合金基体、Ni-P和Ni-W-P镀层的耐腐蚀性能从大至小依次为:Ni-W-P镀层Ni-P镀层Mg-9Al-1Zn合金基体。  相似文献   

5.
《表面工程资讯》2010,(6):61-67
电沉积Ni—W—P纳米微粒复合镀层的组织与结构研究 表面形貌和相结构分析表明:镀液pH对镀层的表面形貌影响最大,随着pH的增大,镀层表面粗糙,但镀层较厚。稀土的加入能有效细化晶粒。(Ni-W-P).SiO2、(Ni-W-P)CeO2纳米微粒复合镀层在镀态时是非晶态结构,而(Ni-W-P)CeO2-SiO2纳米微粒复合镀层在镀态时是混晶结构。热处理后的(Ni-W-P)SiO2复合镀层是晶态结构。  相似文献   

6.
目的采用材料测试方法和防垢实验,研究不同工艺条件下的化学镀Ni-Mo-P合金镀层的组织结构与防垢性能。方法在化学镀Ni-P镀层基底上,添加含有钼酸根离子杂多酸盐,在不同工艺条件下化学沉积Ni-Mo-P合金镀层,研究化学镀Ni-Mo-P合金镀层的表面形貌和组织结构,分析镀液中硼酸含量和钼酸铵含量对镀层沉积速率的影响,观测镀层在结垢实验后的表面形貌并分析结垢速率。通过SEM,XRD和EDS对化学镀Ni-Mo-P合金镀层的表面形貌和组织结构进行检测,研究在酸性镀液中硼酸含量对化学镀Ni-Mo-P工艺条件的影响。采用防垢实验测试化学镀Ni-Mo-P合金镀层的防垢性能。结果在化学镀Ni-Mo-P过程中,钼酸根离子杂多酸盐具有稳定作用。化学镀Ni-Mo-P合金镀层的化学沉积镀液的最佳工艺条件为:Ni SO4·6H_2O 16.5 g/L,Na H_2PO_2·H_2O 20 g/L,钼酸钠0.5~0.8 g/L,硼酸2 g/L,乙酸钠7.5 g/L。化学镀Ni-Mo-P合金镀层的结垢速率明显低于化学镀Ni-P镀层,具有良好的防垢能力,形成了非晶态的镀层。结论采用化学镀Ni-P镀层基底上沉积得到非晶态的Ni-Mo-P合金镀层,硼酸具有调节镀液p H值和络合作用,非晶态的Ni-Mo-P合金镀层平均结垢速率最小值为0.58μm/h,具有良好的阻垢能力。  相似文献   

7.
采用电沉积法制备Ni-P-MoS<,2>复合镀层,研究了镀液中纳米MoS<,2>含量与沉积速度的关系,分析了MoS<,2>添加量对镀层显微硬度以及耐磨性能的影响.结果表明,当纳米MoS<,2>在镀液中的加入量为4 g/L时,镀层的耐磨性能得到改善,磨损质量损失为普通Ni-P镀层的55%,经400℃×1h热处理后复合镀层表现出更好的耐磨性能.  相似文献   

8.
锡青铜化学镀 Ni-P 合金工艺及镀层性能   总被引:1,自引:0,他引:1  
目的在锡青铜基体上化学镀Ni-P合金镀层,提高锡青铜的耐磨性和耐腐蚀性。方法以酸性含锌活化液活化锡青铜试样,在相同的条件下实施化学镀,并对镀态试样进行不同温度(250,400,500℃)下的热处理。对比基体、镀态试样和热处理试样的性能,研究热处理温度对锡青铜化学镀Ni-P合金层微观结构、显微硬度、耐磨性和耐腐蚀性的影响。结果锡青铜表面形成了Ni-P合金镀层,并且镀层无孔隙缺陷,与基体结合良好,沉积速率较快,为10.00μm/h。经热处理后,镀层的微观结构由非晶态向晶态转变,在500℃热处理的镀层显微硬度最大,耐磨性最好。镀态镀层和经250℃热处理的镀层在10%HNO3溶液和10%H2SO4溶液(10%均为体积分数)中的耐腐蚀性明显好于锡青铜基体,镀态镀层在两种介质溶液中的腐蚀速率分别为0.225,0.146 mg/(cm2·d)。结论采用酸性含锌活化液活化锡青铜基体,可以在锡青铜表面制备出化学镀Ni-P合金镀层,且镀覆效果较好。这表明紫铜化学镀Ni-P合金工艺同样适用于锡青铜。  相似文献   

9.
为了研究n-Al2O3/Ni-P化学复合镀层的表面质量,通过正交试验,得到n-Al2O3/Ni-P化学复合镀的最佳工艺参数为:温度86℃,pH值为5.2,搅拌量60L/h,纳米含量8g/L,表面活性剂A为2g/L,B为40mL.以镀层的硬度、孔隙率和表面粗糙度为评价标准,结果表明,n-Al2O3/Ni-P化学复合镀镀层的表面质量优于Ni-P化学镀:n-Al2O3/Ni-P化学复合镀镀层表面均匀致密,孔隙率等级为9级,硬度达到620HV,表面粗糙度Ra0.628μm.  相似文献   

10.
目的对NdFeB磁性材料进行表面防护处理,改善其耐腐蚀性能。方法利用化学镀方法,在NdFeB基体材料表面制备氧化物颗粒增强的晶态和非晶态Ni-W-P/Nb2O5复合镀层,对镀层的组织形貌、元素组成分布及物相进行分析,并通过化学腐蚀失重法对耐腐蚀性能进行测试。结果当镀液中的次亚磷酸钠含量为20 g/L时,形成了晶态镀层;为35 g/L时,形成了非晶态镀层。晶态和非晶态Ni-W-P/Nb2O5镀层均由胞状突起组成,其中弥散分布着共沉积的Nb2O5颗粒。镀层样品的XRD图谱中没有出现与钕铁硼相关的衍射峰。对于制备的晶态和非晶态复合镀层,镀液中Nb2O5质量浓度由5 g/L增加到15 g/L时,化学腐蚀速率明显下降;Nb2O5质量浓度由15 g/L增加到20 g/L时,化学腐蚀速率的下降变得缓慢。结论利用化学镀可以在NdFeB磁性材料表面制备致密的Nb2O5增强Ni-W-P复合镀层,且随着Nb2O5含量的增加,复合镀层的耐腐蚀性能提高。  相似文献   

11.
为提高1060铝合金的耐腐蚀性能和耐磨性能,采用电化学技术、SEM和XRD等方法,研究了柠檬酸对1060铝合金化学镀Ni-W-P镀液的沉积速率、镀层的孔隙率、腐蚀电位、交流阻抗、维氏硬度、形貌等的影响。结果表明,添加柠檬酸,镀液沉积速率有所降低,但是,Ni-W-P镀层的表面平滑光亮,结合力良好,耐蚀性提高。当柠檬酸含量为25 g/L时,镀层的点滴液变色时间最长,为605 s,镀层的孔隙率为0,腐蚀电流密度最小(2.95μA/cm~2),腐蚀电位最大,为-0.384 V,比1060铝合金的正移0.889 V,腐蚀倾向变小。镀层呈典型的花椰菜包状物结构,添加柠檬酸之后,包状物细化,镀层组织结构更紧密均匀,无孔隙,镀层磷含量提高,使镀层由非晶态和微晶构成的混晶结构向非晶态转变,是其耐蚀性高的重要原因,提高钨含量使镀层硬度增加,为174 HV,是1060铝合金基体的4倍。  相似文献   

12.
Ni-Zn-P合金镀层在人工模拟海水中腐蚀行为的研究   总被引:2,自引:1,他引:1  
赵丹  徐旭仲  徐博 《表面技术》2016,45(4):169-174
目的 提高金属材料在海洋环境中的耐腐蚀性和使用寿命.方法 采用碱式化学镀方法 在Q235碳钢表面施镀Ni-P镀层和Ni-Zn-P合金镀层,镀液配方NiSO4·6H2 O 20~25 g/L,C6 H5 O7 Na3·2H2 O 50~70 g/L,NH4Cl 25~30 g/L,NaH2PO2·H2O 15~25 g/L.制备Ni-Zn-P合金镀层时,在以上配方中加入0.4~0.8 g/L ZnSO4·7H2 O.采用金相显微镜和扫描电子显微镜(SEM)观察镀层在人工模拟海水中腐蚀前后的组织形貌,用能谱分析仪(EDS)分析镀层腐蚀前后表面成分.结果 Ni-P镀层和Ni-Zn-P合金镀层中的P质量分数分别为11.26%和9.97%.从P含量和镀层组织形貌,可以确定得到的两种镀层是连续致密的非晶镀层.Ni-Zn-P合金镀层比Ni-P镀层的胞状组织更加均匀平滑,胞与胞的边界结合更加连续致密.在人工模拟海水中腐蚀144 h后,Ni-P镀层出现明显的点蚀坑,Ni-Zn-P合金镀层仍然连续完整.Ni-Zn-P合金镀层腐蚀后,Zn含量明显下降,并出现少量的Fe和O,表明合金镀层腐蚀过程是Zn优先被腐蚀,然后镀层逐渐被腐蚀破坏,最后基体发生腐蚀.Ni-Zn-P合金镀层的腐蚀速率明显低于Ni-P镀层的.结论 Ni-Zn-P合金镀层的胞状组织比Ni-P镀层的更加均匀平滑,胞与胞的边界结合更加连续致密,Ni-Zn-P合金镀层腐蚀速率明显低于Ni-P镀层.  相似文献   

13.
采用复合化学镀方法在铝合金微弧氧化陶瓷膜表面制备了Ni-P-SiC复合镀层,研究了镀液中SiC浓度对复合镀层物相、显微组织、沉积速率的影响,并测试了复合涂层(陶瓷膜/复合镀层)的结合力。结果表明:Ni-P-SiC复合镀层为非晶态结构,与陶瓷膜的界面清晰,完全封闭了微弧氧化陶瓷膜表面的微孔;随着镀液中SiC含量的增加,复合镀层沉积速率降低,SiC共析量则是先快速增大,当含量达到16 g/L后就基本保持不变。  相似文献   

14.
铝化学镀Ni-P的试验研究   总被引:1,自引:0,他引:1  
为了改善铝基体上化学镀Ni-P存在的镀速慢、镀层腐蚀性能差等问题,研究了稳定剂和表面活性剂对铝化学镀Ni-P镀层的沉积速度、硬度、孔隙率、结合力、耐蚀性、腐蚀电位、表面形貌等性能的影响.结果表明,铝上化学镀Ni-P的合理单组分稳定剂是KI(1 mg/L),最佳二元复合稳定剂是"KIO3(1 mg/L) Pb(Ac)2(1 mg/L)".分别加入50 mg/L表面活性剂磺基水杨酸和十二烷基磺酸钠,镀层性能普遍有所提高.  相似文献   

15.
对Zr-8Al合金进行了化学复合镀Ni-P-ZrO_2处理,并研究了不同ZrO_2粒子加入量制备的复合镀层的显微结构、显微硬度、耐磨性和抗蚀性。结果表明,与单纯化学镀Ni-P镀层相比,Ni-P-ZrO_2复合镀层的显微硬度值显著提高,ZrO_2的添加量为4 g/L获得复合镀层显微硬度最高,耐磨性好;在3.5%(质量分数)NaCl溶液中耐蚀性虽有所下降,但腐蚀后镀层完整,仍具有较好的抗蚀性。Zr-8Al合金表面采用4 g/L ZrO_2粒子制备的Ni-P-ZrO_2复合镀层兼具很好的耐磨性和较好的耐蚀性,适用于既要耐磨又要抗蚀的空间活动构件。  相似文献   

16.
钨含量对铝合金化学镀Ni-W-P硬度和耐磨性的影响   总被引:9,自引:0,他引:9  
研究铝合金化学镀Ni-W-P三元合金的耐磨性能,探讨钨含量对铝合金(LY12)化学镀Ni-W-P耐磨性和硬度的影响。结果表明:铝合金表面化学镀Ni-W-P三元合金在400℃加热1h后,表面硬度达HV251080,表面硬度和耐磨性均较基体提高10倍以上;但过高的W含量,使得表面硬度下降。磨损实验发现,试样产生了镀层碎裂和剥落现象。其主要原因是由于铝合金基体与镀层热膨胀系数的差异及Ni3P的析出导致应力过大,引起镀层硬度和耐磨性随着W含量的增加而下降。并用化学镀Ni-W-P合金沉积机理解释了镀层成分分布特征的形成原因。  相似文献   

17.
柠檬酸铵浓度对脉冲电镀Ni-Cr-Mo合金镀层的影响   总被引:1,自引:2,他引:1  
目的揭示柠檬酸铵浓度对脉冲电镀Ni-Cr-Mo合金镀层元素含量、沉积速率、表面形貌和耐蚀性的影响规律。方法采用脉冲电镀法在Q235钢表面制备Ni-Cr-Mo合金镀层,利用辉光放电光谱仪、扫描电镜、Tafel曲线和电化学阻抗谱考察柠檬酸铵浓度对镀层元素含量、沉积速率、表面形貌和耐蚀性的影响。结果随柠檬酸铵浓度的增大,镀层镍含量减小,铬、钼含量增大,镀层沉积速率减小,镀层表面颗粒的尺寸减小,镀层在3.5%Na Cl溶液中的耐蚀性先增强后减弱。结论柠檬酸铵质量浓度为196 g/L时,镀层具有最大的自腐蚀电位(-0.537 V)、最小的腐蚀电流密度(0.313μA/cm~2)和最大的电荷转移电阻(2075?·cm~2),耐蚀性最好。  相似文献   

18.
Ce(SO4)2对化学镀镍液及镀层性能的影响   总被引:5,自引:0,他引:5  
采用电化学方法研究了Ce(SO4)2对化学镀镍液及镀层性能的影响。结果表明:Ce(SO4)2的添加总体上提高了化学镀镍层的耐腐蚀性能和沉积速率,当加入量为2mg·L^-1时,镀层具有最高的沉积速率;当加入量为5mg·L-1时,镀层具有最好的耐蚀性能;Ce(SO4)2能够在电极表面吸附,对次亚磷酸根氧化的促进作用表现在提高了其氧化电流密度,并通过影响化学镀镍的阳极反应来影响化学镀镍层的沉积速率;Ce(SO4)2的加入增大了化学镀镍反应的活化能,提高镀液的稳定性。  相似文献   

19.
利用电沉积方法制备了n-Al2O3/Ni复合镀层.研究了镀液中添加不同纳米颗粒浓度对复合镀层沉积速率、电流效率、镀层中纳米颗粒共析量、表面形貌及腐蚀电位的影响.研究表明,随着镀液中纳米颗粒浓度提高,镀层中的纳米颗粒共析量也随之提高,在20 g/L时趋于稳定;沉积速度和电流效率先增后降,在30 g/L时达到最大;纳米颗粒的加入改变并细化了镀层的表面形貌;当纳米颗粒浓度20 g/L和30 g/L时镀层表现出较好的耐腐蚀性能.  相似文献   

20.
为提高A356铝合金的表面防护性能,在A356铝合金基体上制备了Ni-P-B4C复合镀层。采用SEM和XRD分别对镀层进行形貌观察和物相表征,利用显微硬度计和电化学工作站对镀层硬度和耐蚀性进行研究。结果表明:Ni-P镀层和Ni-P-B4C复合镀层都较致密和平整,B4C颗粒均匀弥散分布于复合镀层上;物相分析表明,B4C的加入没有改变原二元镀层的非晶结构;B4C加入使得复合镀层硬度显著提高,Ni-P-B4C镀层硬度约为基体的8倍,Ni-P镀层的2倍;在3.5%NaCl溶液中的塔菲尔极化曲线结果表明,Ni-P镀层和Ni-P-B4C复合镀层都表现出良好的保护基体作用,二元镀层耐蚀性略优于复合镀层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号