首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
谢磊 《安徽化工》2013,39(3):44-47
针对延迟焦化汽油因含有烯烃、二烯烃等不饱和烃,在高温条件下形成聚合物,在换热器、反应器和管线等设备沉积,造成设备通道堵塞,装置被迫停工。2007年安庆石化创造性地将烯烃预加氢饱和反应器应用于汽油加氢装置,使其运行周期从90天延长至720天,有效避免了加热炉炉管及主反应器顶部结焦。  相似文献   

2.
介绍了60万t/a焦化汽油和焦化液化气混合加氢技术在中国石化某炼化公司的应用。工业装置实际运行结果表明,以焦化汽油和焦化液化气为原料,在脱二烯烃催化剂CB-206和专用催化剂NT-105的催化作用下,能够生产出烯烃≯1.0%(wt)的精制液化气和溴价≯2.5 gBr/100g的精制石脑油,且产品性质稳定,操作条件成熟,具有很好的推广价值。  相似文献   

3.
《广东化工》2021,48(9)
从催化裂化反应过程中丙烯的生成机理入手,通过优化原料油性质,提高反应温度、选择相应的主催化剂及保持合适的活性、添加丙烯助剂以及回炼粗汽油等优化措施可以较为明显的提高装置丙烯收率。结果表明,原料油饱和烃含量在65%左右,反应温度524℃、催化剂活性约60、添加藏量7%的丙烯助剂以及回炼8 t/h粗汽油时,丙烯收率由5%左右提高至7.45%。  相似文献   

4.
提出了预反应与反应精馏相结合,预反应器环境适合C6烯烃醚化,反应精馏塔环境适应C5烯烃醚化的组合式FCC轻汽油醚化新思路.运用过程模拟软件Aspen Plus 10.2,对上述组合式醚化新工艺进行了模拟优化分析.模拟时采用平衡级模型RadFrac作为反应精馏模型,并使用Visual Fortran 6.5编写了动力学子程序接口.其中的相平衡计算,采用了UNIF-DMD活度系数模型,对于Aspen数据库中缺失而又鲜有文献报道相关组分的热力学性质,采用了Bcnsonhe Joback等基团贡献法进行了估算,得到了常压下各叔烯烃不同温度下醚化反应的Gibbs自由能变化以及各醚化反应的平衡常数.结果证实,在优化的工艺操作条件下,组合式FCC轻汽油醚化工艺,可以解决现行醚化工艺烯烃转化率较低的问题,使FCC轻汽油产品可使烯烃体积分率从42.40%降低至25.40%,辛烷值提高2.74个单位.  相似文献   

5.
辛星  李澜鹏 《当代化工》2021,50(9):2163-2165,2200
焦化液化气作为延迟焦化装置产品,长期以来作为民用烃出厂,经济效益未得到充分开发.镇海炼化公司采用中石化大连石油化工研究院的焦化液化气和汽油混合加氢制备乙烯裂解料技术,建设了一套60万t·a-1的焦化液化气与焦化汽油混合加氢装置.生产出烯烃质量分数不大于1.0%的精制液化气和溴价不大于2.5 g Br·(100 g)-1的精制石脑油,可作为优质的乙烯裂解原料.对该工艺路线的技术特点、工业运行状况、经济效益等进行探讨分析,数据表明,焦化液化气和焦化汽油经新工艺路线加工后作为乙烯裂解原料,工艺路线简洁,经济效益显著.  相似文献   

6.
由于大庆石化公司炼油厂汽油加氢精制装置预反应器压差升高,需更新催化剂,装入中国石油大庆化工研究中心研发的新一代石蜡加氢催化剂SD-1和SD-2.分析了SD-1、SD-2用于汽油加氢装置预反应器的可行性,工艺运行2个月结果表明:床层压差上升平稳,产品质量合格.  相似文献   

7.
研发了催化裂化汽油中二烯烃选择性加氢催化剂FO-35T,并在90万t/a汽油加氢装置再次工业应用。结果表明,该催化剂能够使催化裂化汽油中的二烯烃质量分数降低90%以上,总烯烃含量下降≤3,RON降低≤1个单位,证明了FO-35T脱二烯烃催化剂良好的加氢选择脱二烯烃的性能。该催化剂活性高,选择性好,对烯烃及辛烷值影响较小,可以生产二烯烃质量分数≤0.2%的产品油,从而满足醚化进料的要求。  相似文献   

8.
以催化裂化汽油为原料,采用中压加氢实验装置模拟S-Zorb工艺研究催化裂化汽油临氢吸附脱硫的反应规律。使用工业吸附剂考察烯烃分子在临氢吸附脱硫过程中的反应行为,结果发现,汽油中C_5和C_6烯烃主要发生加氢饱和反应,异构化和芳构化反应性能较差,这是导致精制后汽油辛烷值损失的主要原因。为了减少S-Zorb工艺中C_5和C_6烯烃加氢饱和引起的辛烷值损失,以9∶1的质量比混合工业吸附剂和实验室研制的具有异构化及芳构化性能的助催化剂,优化并获得提高汽油辛烷值的工艺条件为:反应温度为430℃、反应压力为2.4 MPa、重时空速为4 h~(-1)、氢油摩尔比为0.30。相较工业吸附剂,精制汽油硫质量分数小于10μg/g,C_5和C_6烯烃减少量降低3.84%,C_5和C_6异构化程度提高0.71,汽油辛烷值损失减少1个单位。  相似文献   

9.
FF-14催化剂在蜡油加氢装置上的应用   总被引:1,自引:0,他引:1  
介绍了FF-14催化剂在安庆分公司蜡油加氢装置的应用情况,以及反应器催化剂装填、干燥和预硫化过程,分析了该催化剂对焦化蜡油、减压蜡油在开工初期、中期加氢处理过程中均具有良好的脱硫、脱氮性能。加氢处理蜡油作为FCC装置原料,确保了安庆分公司汽油质量升级目标的实现。  相似文献   

10.
预加氢反应单元作为重要的重整原料预处理单元,粗石脑油中的二烯烃属于高度不饱和烃,易在预加氢系统结焦,导致系统压降上升,催化剂堵孔失活,制约装置长周期平稳运行。本文选用国外2种典型的二烯烃加氢催化剂,采用选择性加氢技术,实现了二烯烃的深度脱除,从而抑制结焦反应,延长装置的整体开工时间。  相似文献   

11.
焦化汽油加氢装置长周期运行探讨   总被引:1,自引:0,他引:1  
钟宇峰 《广东化工》2012,39(5):177-178,180
焦化汽油加氢装置由于反应器压差上升,影响了装置长周期的稳定生产,文章分析了引起本装置催化剂床层压差上升的原因,并对延长装置运转周期的措施进行深入的探讨。  相似文献   

12.
于文奇 《广州化工》2011,39(4):131-133
首先叙述了汽柴油加氢装置反应器床层压降升高的经过,通过具体分析认为原料中所含的焦粉过和二烯烃是导致床层压降上升的主要原因,其次介绍了相关应对措施及实施效果,最后总结出类似事故的处理建议。  相似文献   

13.
抚顺石化公司石油三厂120万 t/a 柴油中压加氢装置于2002年7月建成投产,并开车一次成功.2010年装置换用 FH-98加氢精制催化剂,工业应用表明,FH-98催化剂具有优异的加氢性能和高的加氢脱硫活性,加氢处理焦化汽油、柴油混合油,生产清洁柴油和合格的乙烯裂解原料.  相似文献   

14.
对焦化汽油携带“焦粉”的分析   总被引:1,自引:0,他引:1  
于建建  李飞  姜恒 《化学工程师》2014,(3):65-66,69
对延迟焦化装置生产的焦化汽油中所携带"焦粉"的成分及其原因进行了分析。通过热重分析及X射线粉末衍射方法对"焦粉"进行定性分析,经理论计算与实际结果进行对比发现"焦粉"的主要成分为铁的硫化物;而铁的硫化物的产生主要是因为分馏塔塔顶油气中含有大量H2S,在分离油气过程中H2S对管线和器壁的腐蚀所造成的,所谓的焦化汽油携带"焦粉"其实为铁的硫化物。  相似文献   

15.
JT-1G型和JT-4型炼厂干气加氢精制催化剂的开发及工业应用   总被引:5,自引:1,他引:4  
介绍了炼厂焦化干气加氢精制催化剂的开发研制过程及其在炼厂制氢、大中型合成氨原料路线改造工程中的应用概况。并对研制开发的JT-1G和JT-4型加氢催化剂应用于国内炼厂富气汽柴油吸收串绝热等,炼厂干气绝热床循环法加氢以及等温-绝热加氢等三种工艺流程的操作运行工况作了说明。  相似文献   

16.
介绍了中国石化抚顺石油化工研究院(FRIPP)开发的焦化石脑油加氢技术,并对目前焦化石脑油单独加氢遇到的问题进行了分析,提出了保证焦化石脑油加氢装置长周期运转的方法。在广州分公司的工业应用表明,采用FRIPP焦化石脑油加氢成套技术,装置连续运行23个月,运转周期比以往提高约4倍,反应床层压差仍保持在0.03MPa,没有出现波动,彻底解决装置由于反应床层压差上升过快需要频繁停工消缺的问题。  相似文献   

17.
宋永一  李韬  牛世坤  方向晨 《当代化工》2014,(12):2582-2584
SRH柴油液相循环加氢技术是以利用油品中的溶解氢来满足加氢反应的需要,以油品中氢浓度的变化作为反应的推动力。该技术催化剂床层处于液相中、接近等温操作,反应效率高、产品收率高;高压设备少,热量损失小,装置投资和操作费用均低。工业应用结果证明,SRH液相循环加氢技术以直馏柴油为原料,在反应器入口压力9.0~10.0 MPa、新鲜料体积空速1.4~2.0 h-1、循环比1.5~2.0、反应器入口温度350~360℃等工艺条件下,可以生产满足国Ⅳ排放标准清洁柴油质量要求,适当提高反应器入口温度,柴油产品主要指标满足国Ⅴ排放标准清洁柴油质量要求;处理低硫含量的直馏柴油和焦化柴油的混合油,在反应压力9.0 MPa、新鲜料体积空速2.0 h-1、循环比2.5、反应器入口温度370℃等条件下,柴油产品硫含量等主要指标满足国Ⅳ排放标准清洁柴油质量要求。同时工业装置长期稳定运行表明SRH液相循环加氢技术和关键设备成熟可靠。  相似文献   

18.
A model is developed based on a two‐stage hydrogenation of pyrolysis gasoline to obtain a C6–C8 cut suitable for extraction of aromatics. In order to model the hydrogenation reactors, suitable hydrodynamic and reaction submodels should be solved simultaneously. The first stage hydrogenation takes place in a trickle bed reactor. The reaction rates of different di‐olefines as well as hydrodynamic parameters of the trickle bed (i.e., catalyst wetting efficiency, pressure drop, mass transfer coefficient and liquid hold‐up) have been combined to derive the equations to model this reactor. The second stage hydrogenation takes place in a two compartment fixed bed reactor. Hydrogenation of olefines takes place in the first compartment while sulfur is eliminated from the flow in the second compartment. These reactions occur at relatively higher temperature and pressure compared to the first stage. The key component in this stage is considered to be cyclohexene, of which the hydrogenation was found to be the most difficult of the olefines present in the feed. The Langmuir‐Hinshelwood kinetic expression was adopted for the hydrogenation of cyclohexene and its kinetic parameters were determined experimentally in a micro‐reactor in the presence of the industrial catalyst. The model was solved for the whole process of hydrogenation, including hydro‐desulfurization. The predictions of the model were compared with actual plant data from an industrial scale pyrolysis gasoline hydrogenation unit and satisfactory agreement was found between the model and plant data.  相似文献   

19.
许健 《燃料与化工》2012,43(5):48-49,52
介绍了宝钢KK法加氢装置反应系统的温度控制状况,对加氢反应温度的控制方法进行了分析.认为合理控制反应器进口温度,明确催化剂再生条件是延长催化剂使用周期的关键.  相似文献   

20.
FLUID COKING is a continuous process that thermally converts heavy hydrocarbons, such as oil sands bitumen, to lighter and higher‐value products by horizontal spray injection onto a fluidized bed of hot coke particles. The cyclone sections of commercial fluid coker reactors experience fouling during typical operation, which limits unit run lengths. The main objective of this work is to improve fluid coker reliability by proposing cyclone fouling mitigation strategies based on practical operation modifications. This study developed a process simulation in Aspen Plus to establish the combined impact of vapour‐liquid equilibrium, endothermic thermal cracking reactions, pressure changes, and overall fluid dynamics in the selected fluid coker control volumes. The hydrocarbon composition was defined by applying an assay characterization of distillation data for representative hydrocarbon streams. Case studies were performed to determine the sensitivity of the predicted temperatures and hydrocarbon condensate flow rates for: (a) the burner‐to‐fluid coker transfer line temperature; (b) the hot coke flow rate; (c) hot coke entrainment from the freeboard region; and (d) scouring coke flow rate in the horn chamber. The scouring coke flow rate was identified as the most promising process lever to mitigate fluid coker cyclone fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号