首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杜济良  白龙  孙详  赵炳镐  杜颖  田沈 《太阳能学报》2019,40(8):2143-2147
研究两相厌氧消化系统处理乙醇发酵残留物的过程中,酸化相产生的氢气回流到甲烷相中是否促进CO_2减排及甲烷化过程,提高清洁能源产量以及实现节能减排的目标。实验过程中回收酸化相产生的H_2共10 L,将其回流到甲烷相后,CH_4含量提高9.7%,同时CO_2含量降低7.1%,H_2利用率为94%,整个回流H_2过程并未对反应系统稳定性造成影响,一方面说明通过H_2回流可将酸化相产生的难以分离利用的中间产物转变为底物加以利用,使其转变为CH_4气体,提高清洁能源的产量,另一方面可有效减少厌氧消化过程中CO_2的排放,实现清洁能源生产过程中节能减排的目标。  相似文献   

2.
文章对以CO_(2)/H_(2)O为气化剂的生物质气化,生产H_(2)/CO为3∶1的合成气的反应过程进行了热力学分析。研究发现,提高气化温度可以增大H_(2)和CO的总产率,且超过700℃基本没有CH_(4)和C的生成;通过控制气化剂CO_(2)/H_(2)O的通入比例,可以实现H_(2)/CO合成气的定向调控;CO_(2)通入量的增大可以提高CO产率,降低H_(2)/CO为3∶1的合成气的气化温度(临界温度)和所对应的(H_(2)+CO)总产量;H_(2)O通入量的增加可以增大H_(2)产率,提高临界温度和所对应的(H_(2)+CO)总产量。文章拟合出临界温度和所对应的(H_(2)+CO)总产量与CO_(2)和H_(2)O通入量的关系式,为工业生产H_(2)/CO为3∶1的合成气以及后续甲烷化提供理论支持。  相似文献   

3.
推荐煤气化发电与电解水制氢联产干冰的工艺路线。该工艺以煤炭、空气和水为原料,干粉煤纯氧高温(1700℃)气化全部转化成合成气(CO+H_2),用脱硫后的纯合成气CO含63%以上的部分合成气作电解水制氢的循环介质,可使制氢的电耗由4.76k W·h/m~3 H_2(标准状态)降到1.67k W·h/m3 H_2(标准状态)。同时CO在水电解阳极同水中的氧变换成CO_2(或CO_2+O_2)。阳极排出的CO_2浓度可调节成79%CO_2+21%O_2,用于燃气轮机发电助燃剂,排出的烟气为高温纯CO_2,进入废锅产高压蒸汽用于发电后经冷却节流膨胀成雪花状固体CO_2干冰,可用作植物肥料。水电解阴极取得纯H_2产品,可用于合成气中配H_2,用于合成甲醇。于是电解水槽成为用电能分解水和合成气用于发电和生产化工产品原料气的转化调节核心装置,其调整负荷控制在40%以内,成为调节电力与化工产品生产的经济可行的创新技术。  相似文献   

4.
据低碳能源情景预测,我国2050年能源总消费量为78×10~8t(标煤),则CO_2排放量将由2008年的71.25×10~8t增加到136.5×10~8t。煤炭需求量为27.5×10~8t,CO_2排放量约为70×10~8t。我国现有燃煤发电4×10~8~5×10~8k W,年用煤炭约14×10~8~17.5×10~8t,集中排放CO_228×10~8~35×10~8t。常规煤燃烧释放出大量污染物造成酸雨、使气候变暖,形成各种严重的自然灾害。燃煤发电的碳利用率为零。建议研究开发煤气化发电与电解水储电、CO_2综合利用系统技术,从根本上解决我国煤炭清洁利用的问题。该系统选用粉煤纯氧高温高压气化制合成气发电,碳转化率达到99%,免去燃煤锅炉发电产生SO_2、NOx和粉尘所需要的高投资高成本的处理费用。煤气化制得的合成气,部分经水电解分离,负极出H_2,正极出21%O_2+79%CO_2代替空气用于气轮机燃烧发电,排出高温纯CO_2尾气入废锅产高压蒸汽发电后,经冷却、节流,膨胀成雪花状CO_2压榨成干冰作化肥,供植物作养分,实现碳循环资源化利用。  相似文献   

5.
诸林  蒋鹏  范峻铭 《太阳能学报》2015,36(8):1978-1984
化学链重整是一种新型的合成气制备技术,为提高化学链重整气中H_2含量,捕集CO_2,提出化学链重整联合CO_2捕集制氢系统。采用Aspen Plus对化学链重整过程进行模拟,结果表明:化学链重整气组成模拟值较好地吻合实验值。对所提出的系统进行热力学分析,以H_2产率和CO_2捕捉率为系统性能评定指标,得到反应优化条件:吸收反应温度为600~620℃,CaO/CH_4、蒸汽/CH_4、H_2O/CH_4、NiO/CH_4物质的量之比分别为:0.8、0.25、0.3、1.4,所得产品气中H_2含量为91.13%(高于化学链重整气中H_2含量64.12%),H_2产率为1.96,CO_2捕集率达到95.44%。  相似文献   

6.
日本京都大学工业系,不久前开发出一种可以从 CO_2中大量提取汽油的新技术。该技术是让 CO_2与 H_2发生反应,使之先形成甲醇,然后再使甲醇变成汽油。制取时,只需使 CO_2在反应塔中通过一次,便可使 CO_2的26%变为汽油。由于 CO_2的稳定性很好,因此,一般很难使其转变为其它的物质。日本专家通过对催化  相似文献   

7.
在自制的生物质真空氧载体气化反应装置上,考察无氧载体时反应温度对气体产物分布及合成气中H_2和CO总含量的影响情况,研究氧载体对小麦秸秆真空气化过程的影响规律,并借助扫描电镜(SEM)对反应前后的氧载体进行表征。实验结果表明:无氧载体时,随着反应温度的升高,合成气中H_2和CO含量均逐渐增大,750℃时H_2含量达到10.13%;当反应温度从550℃升高到800℃时,反应温度对CO_2含量影响最为显著,CO_2含量从27.31%减小到14.43%。有氧载体时,在上述反应温度范围内,H_2含量从6.43%升至13.62%,合成气中H_2/CO值、H_2和CO总含量均随反应温度的升高而增大;氧载体可增大气体产物中H_2与CO产量,同时H_2/CO值也明显增大,说明氧载体可促进生物质气化反应;在真空条件下,氧载体并未发生明显烧结,且反应后的氧载体结构更有利于生物质气化,但其机械强度有所降低。  相似文献   

8.
在微波辐照生物半焦作用下,对CO_2/水蒸气联合重整CH_4开展实验研究,考查联合重整反应特性,讨论联合重整反应对合成气品质、生物炭损耗、表面特性和官能团的影响规律.结果表明,联合重整反应可以促进反应气转化,使得90,min反应时间内合成气的H_2/CO气体体积比平均值升至0.923,H_2/CO气体体积比值更接近1;与CH_4干重整反应相比,联合重整过程生物炭损耗问题更突出,90,min后生物炭余重率为93.18%,,但联合重整反应可以延迟生物炭表面特性的恶化;联合重整过程主要消耗内酯基和羰基官能团,其中消耗较多的内酯基推测是CH_4蒸汽重整所致.  相似文献   

9.
在自建的气体燃烧实验台上进行了合成气的扩散燃烧实验,研究了H_2/CO体积比对火焰形貌和污染物排放的影响,分析了在3种稀释剂(CO_2、N_2、Ar)作用下合成气火焰中NO和CO排放指数的变化规律及原因。结果表明:当H_2/CO体积比为10∶0(纯H_2)和9∶1时,火焰呈淡黄色,当H_2/CO体积比为8∶2时,开始出现蓝色火焰;随着合成气中CO体积分数的增大,火焰由淡蓝色逐渐变为亮蓝色,火焰清晰度逐步提高;随着H_2/CO体积比的增大,NO的排放指数提高,而CO的排放指数逐渐降低;3种稀释剂均可降低NO的排放指数,其中CO_2的效果最好,N_2和Ar的效果相差不大;稀释剂会提高CO的排放指数,且随着稀释比的增大,CO排放量急剧增大;随着H_2/CO体积比的增大,稀释剂对NO和CO排放指数的影响有所减弱。  相似文献   

10.
比较了工业合成气(A)(H_2:CO:N_2=64:32:4,vol%)和生物质合成气(B)(H_2:CO:CO_2:N_2=45:45:7:3,vol%)在Co/SiO_2催化剂上F-T合成的反应性能。在T=513K,P=2.0MPa,GHSV=1000h~(-1)的条件下,气体(A)和气体(B)的(H_2+CO)转化率X_((H_2+Co))和CH_4选择性S_(CH_4)分别为95.54%、41.24%和17.19%、12.25%。在反应产物的分布上,两种气体的C_(5+)烃选择性S_(C_(5+))分别为67.46%、80.62%,气体(B)的产物向高碳数烃类迁移。气体(B)100h稳定性实验表明:24h后反应活性和液态烃类选择性基本稳定,X_(CO)和C_(5+)收率平均值分别为29.13%、131.30g·m~(-3)(syngas)。与工业合成气相比,生物质合成气液态烃类选择性高。  相似文献   

11.
为了研究合成气中CO_2含量与气化炉温度的关系,将气化炉分为3个区域:水分蒸发及挥发分热解区、燃烧区及气化区。水煤浆和氧气相继经过这3个区域发生一系列物理、化学反应最终生成合成气。建立计算模型,得到整个气化过程反应放热Q与合成气中CO_2的关系。结论表明:合成气中CO_2含量越多,气化炉温度越高;增大氧煤比,可使气化炉温度升高;较粗的煤粉,可使气化炉温度高。因此合成气CO_2含量可作为判断炉温的依据,氧煤比和煤粉细度可以作为调节炉温的手段。  相似文献   

12.
采用Chemkin软件中的OPPDIF(对冲扩散火焰)模型对H_2/CO合成气燃烧产生的NO_x排放特性进行了数值研究,分析了合成气扩散火焰中H_2体积分数对NO_x形成的影响。使用OPT(光学薄辐射)模型考察了辐射散热对模拟火焰的影响,采用GRI-Mech 3.0详细化学反应机理研究了NO_x的生成机制。数值模拟结果表明:非绝热条件下,随着合成气中H_2体积分数的增加,层流对冲扩散火焰的峰值温度单调增加;在绝热条件下,合成气火焰的峰值温度会随H_2体积分数的增加而略微下降;同时,随着H_2体积分数的增加,合成气燃烧产生的NO含量明显增加,其中热力型NO的生成量随H_2体积分数的增加变化明显,主导着NO生成量的变化趋势。  相似文献   

13.
用浸渍法结合程序升温碳化法制备1Ni-5Mo_2C/ZrO_2与Mo_2C/ZrO_2,作为CH4和CO_2干重整制合成气反应催化剂。采用X射线衍射(XRD)、BET比表面积(BET)、X显微镜(TEM)对催化剂的结构进行表征,在常压固定床反应器上测试1Ni-5Mo_2C/ZrO_2与Mo_2C/ZrO_2催化剂在900℃时(空速为8000 cm~3·g~(-1)cat·h~(-1))重整CH4/CO_2(CH4∶CO_2=1∶1)的催化活性。研究表明,在甲烷干重整(DRM)反应中,催化剂的催化活性在7 h内保持稳定。由于1Ni-5Mo_2C/ZrO_2催化剂具有合适的孔径,丰富的表面孔以及Ni基载体之间的相互作用,CH_4和CO_2的转化率均达96%以上,H_2和CO现出高催化活性、产率,兼具优良的稳定性能。  相似文献   

14.
《动力工程学报》2016,(8):658-663
为改善污泥气化效果,采用化学链气化技术处置污泥.在小型流化床上进行试验,基于赤铁矿载氧体,研究了O/C物质的量比、气化温度和水蒸气体积分数对污泥气化特性的影响以及赤铁矿多次连续循环过程中的物化性能.结果表明:赤铁矿会显著提高污泥的气化程度和碳转化率;当O/C物质的量比增大时,合成气中CO和CH_4的体积分数下降,H_2的体积分数呈现先下降后上升的趋势;随着气化温度的升高,合成气中CO和H_2的体积分数逐渐提高,CO_2和CH_4的体积分数降低,碳转化率不断提高;当水蒸气体积分数增大时,CO_2和H_2的体积分数逐渐提高,CO和CH_4的体积分数不断下降,碳转化率提高;赤铁矿在长时间运行中表现出良好的反应性.  相似文献   

15.
《动力工程学报》2017,(6):432-439
利用自制恒温热分析系统研究了大同烟煤和阳泉无烟煤在O_2/CO_2/H_2O气氛下中高温燃烧时NO的释放行为,并与O_2/N_2和O_2/CO_2气氛下的情况进行了对比分析.结果表明:当氧气体积分数为5%时,大同烟煤在O_2/CO_2和O_2/N_2气氛下燃烧时只有一个NO体积分数峰,而在O_2/CO_2/H_2O气氛下却变成一前一后2个峰;当氧气体积分数升高到21%后,大同烟煤在O_2/CO_2/H_2O气氛中的NO释放过程又变为一个体积分数峰;阳泉无烟煤的NO释放过程与大同烟煤类似;大同烟煤在O_2/CO_2气氛中的NO排放量始终低于O_2/N_2气氛中;由于低氧气体积分数下H_2O气化反应的影响,大同烟煤在O_2/CO_2/H_2O气氛中的NO排放量在高温下高于O_2/CO_2气氛中;氧气体积分数升高后,大同烟煤在O_2/CO_2/H_2O气氛中的NO排放量又低于O_2/CO_2气氛中;阳泉无烟煤的NO排放量高于大同烟煤,但其不同气氛下的变化趋势与大同烟煤一致.  相似文献   

16.
在自行研制的小型常压双流化床上进行生物质化学链气化制备高H_2/CO物质的量比合成气的实验研究.考察了燃料反应器温度对合成气组分、合成气H_2/CO物质的量比、烟气组分、碳转化率和冷煤气效率的影响,探讨了双流化床连续运行10,h的操作稳定性,并借助X射线衍射仪(XRD)与扫描电镜(SEM)对反应前后的载氧体进行表征.结果表明,燃料反应器温度为820,℃时,合成气中的H_2/CO物质的量比能达到2.45,;表征结果表明,载氧体在反应后主要成分由Fe_2O_3变为Fe_3O_4,且颗粒表面发生烧结.  相似文献   

17.
重点从CO_2对初凝液滴pH值的影响入手对超临界H_2O/CO_2混合工质透平初凝区腐蚀过程进行了分析,给出了H_2O/CO_2混合工质pH值的精确计算方法。并以NH_3作为碱化剂,对初凝液滴的pH值进行调节,进一步分析CO_2对初凝区的酸腐蚀过程。研究结果发现,NH_3在一定浓度范围内可以有效改善初凝区的pH值,但由于其分配系数较大,当CO_2超过一定浓度时,将不再适用,建议采用分配系数更小的碱化剂进行pH值的调节。  相似文献   

18.
百吨级生物质合成气合成二甲醚中试系统设计及运行分析   总被引:2,自引:0,他引:2  
该系统以农业废弃物玉米芯经富氧气化制备的低H_2/CO合成气为气源,采用固定床一步法合成二甲醚工艺,高效生产DME产品.运行结果表明,在空速为650h~(-1)和1200h~(-1)时,CO单程转化率分别为82.00%和73.55%.DME选择性分别为73.95%和69.73%,DME时空产率分别为124.28kg/(m~3·h)和203.80kg,(m~3·h).生物质合成气的深度脱氧和脱焦油是保证合成系统稳定运行的关键.合成尾气H_2/CO较高,经脱CO_2后循环利用可大大提高DME的产率.  相似文献   

19.
生物质能的应用前景分析   总被引:11,自引:0,他引:11  
生物质能是可再生能源的重要组成部分,生物质能的高效利用,对解决能源和生态环境问题将起到十分积极的作用。概述了目前生物质能的主要转换方式。化学转变中的液化、气化和热解技术是目前主要研究方向。通过液化、热解可以直接得到一些化工产品;通过气化可以得到合成气,可以用来合成氨或者甲醇。总之,通过这些转变不但可以得到一些化工产品,而且可以缓解化石能源桔竭带来的能源危机。  相似文献   

20.
3 气氛的参数控制 在一般渗碳气氛中含有CO、CO_2、CH_4、H_2、H_2O、O_2和[C]等七种成分和不参与反应的N_2。在这个系统中,可以有几十种反应,但只有四个反应是独立,其余的反应式可以由这四个反应式组合而成。四个反应式:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号