共查询到20条相似文献,搜索用时 15 毫秒
1.
随着风力发电的广泛应用,对风力机健康状态进行准确监测的重要性日益凸显,为此提出了一种基于风力机功率预测的健康状态监测方法,即结合多项式模型和自回归模型特点,考虑风速与风力机输出功率之间的相关性和滞后性,利用改进非线性自回归模型对某风场风力机输出功率进行预测,并将预测结果与传统灰色模型、BP神经网络模型预测结果进行对比,计算与实测数据之间的误差。最后,选取功率预测系数中变化较为稳定的系数项作为观测系数,通过标准残差法确定异常观测系数反推风力机健康状态。分析结果表明,改进非线性自回归模型预测值与实测数据较为接近,趋势较为吻合。相比于传统灰色模型、BP神经网络模型,改进非线性自回归模型预测误差较小,精度较高。可见通过分析功率预测系数变化能够及时发现风力机健康状态变化,为故障发现提供参考。 相似文献
2.
3.
风功率预测在不同应用场景中发挥着越来越重要的作用,从时间尺度上可分为超短期、短期和中长期的风功率预测。基于短期风功率预测对训练时间和预测精度均有较高要求,提出了一种利用共轭梯度(cconjugate gradient,CG)法优化核极限学习机(kernel extreme learning machine,KELM)的方法,即利用共轭梯度核极限学习机(CGKELM)方法来预测风功率,在保证预测精度的前提下,进一步缩短KELM的训练时间。通过利用某风电场的实测数据进行仿真,以均方根误差和相对标准差作为评价指标,将仿真结果分别与反向传播(BP)神经网络、最小二乘支持向量机(LSSVM)和其他KELM方法得到的结果进行比较。研究结果表明:在短期风功率预测方面,CGKELM训练时间比其他方法短,且参数设置简单。该结果证明了CGKELM的有效性,对风电项目的投资决策具有一定的参考价值。 相似文献
4.
5.
为了对风力机风速仪测量风速的准确性进行分析,本文以风速仪修正试验数据为基础,采用三维流场计算方法对其进行研究,并在数值研究中,加入风速仪计算模型,同时采用Simon-wong刚体算法解决风速仪在数值模拟中的被动响应问题。通过对试验数据和模拟结果对比分析后可知:风力机在运行状态下,风速仪测量风速与实际来流之间存在偏差,且最大偏差出现在风力机额定转速附近;与一般定常计算模拟相比,加入风速仪计算模型后,风速仪模拟测量风速最大误差由6.4%降为2.89%,模拟结果更为准确;风速仪在风速测量中,自身也存在测量风速极差,且极差随着来流风速的增加而变大。 相似文献
6.
鉴于准确预测风功率对风电并网系统安全、稳定运行具有重要意义,提出了基于Bagging神经网络集成的风功率预测模型。先利用拉伊达(3σ)准则对数据进行预处理得到有效的风机数据,结合灰色关联度和Relief算法对数据进行特征提取;其次在Bagging集成学习中使用Bootstrap抽样,随机产生K个训练集并用自组织RBF神经网络(ErrCor-RBF)分别对风功率进行预测;最后叠加K个预测结果取均值得到最终预测结果。仿真结果表明,Bagging神经网络集成的风功率预测模型性能更好、预测精度较高。 相似文献
7.
在电力系统中风电装机容量增长的背景下,高精度的超短期风功率预测是保证系统可靠运行的重要基础。为此,提出一种以复数据经验模态分解的噪声辅助信号分解法(NACEMD)和Elman神经网络为基础的超短期风功率组合预测方法。在风功率序列中添加白噪声,使用NACEMD将其按照不同波动尺度逐级分解,得到不同时频特性的分量,然后利用Elman神经网络对各分量建立预测模型,以各分量的不同时频特性为基准对预测结果进行叠加,得到风功率预测值。实例分析表明,提出的组合预测法既可进一步减轻现有方法中存在的模态混叠现象,具备较高的预测精度。研究成果可为风功率预测提供参考。 相似文献
8.
目前风功率预测多为风功率期望的点预测,且以采样间隔较大的功率序列作为建模序列,这样会降低预测模型对风功率时序特征模拟的准确度和可信度。文中基于小采样间隔风功率序列,提出ARMAX-GARCH风功率预测模型。通过构造风功率新息序列,结合小时平均风功率序列,建立ARMAX点预测模型,采用BIC最小信息准则和相关性分析实现模型定阶和外生变量选择;采用GARCH模型模拟残差的波动特性实现区间预测。以海岛微电网实测风功率数据为例,进行提前1 h风功率预测。结果表明,与持续法、ARMA和RBF神经网络相比,该预测模型能显著提高风功率期望的点预测精度并具有较好的区间预测效果。 相似文献
9.
为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立基于长短时神经网络(LSTM)的预测模型,利用贝叶斯优化算法(BO)进行超参数组合,解决人为调参导致训练结果不佳的问题;最后通过历史风电场数据进行算例分析。结果表明,IEWT-FE-BO-LSTM模型对超短期风功率有较高的预测精度和预测效率。 相似文献
10.
11.
12.
13.
15.
为更精准地预测风功率,首先结合改进的网格法和K均值聚类(Kmeans++)算法预处理风机数据,以剔除异常数据,引入临界概率并根据聚类的实际物理意义设置聚类中心点个数,临界概率同时反映风机性能。其次,利用改进的蝙蝠算法(改进BA)结合前馈(BP)神经网络建立风功率预测模型,BA中引入速度权重因子和高斯变异来避免陷入局部极值。最后,针对风功率模型的预测误差建立自回归滑动平均(ARMA)模型,采用误差的ARMA模型来修正风功率的预测值。结果表明,BA-BP-ARMA组合模型的预测效果更好。研究成果可为风功率预测提供参考。 相似文献
16.
风场建设和运行离不开气象服务,要对风场的气象情况进行实时检测。长期以来气象参数的获得一直停留在人工采集阶段,同时也不便于多区域气象数据的共享。微电子技术、无线通信技术和传感器技术的进步,推动了无线传感器网络的快速发展。文章提出了运用无线传感器网络在风电场进行测风数据采集,从低功耗、低成本的角度出发,采用S3C2410ARM芯片与CC2430 ZigBee芯片作为核心,对传感器节点软硬件进行了设计,实现了对风电场气象数据的采集和无线传输。 相似文献
17.
由于风速的随机性、间歇性,以及风电场内各机组风速、功率的分散性,给风功率预测带来了较大难度。在计算风速线性相关的权值基础上,提出了改进模糊C均值聚类算法(fuzzy c-means,FCM)的风速模型,建立了风电场等值风速与改进FCM风速的关系函数。以某风电场实测数据进行验证,结果表明:所提风电功率预测方法算法简单;该方法预测精度提高了71.35%。在该风电场不同日周期下,验证了所提预测方法的有效性和普适性。 相似文献
18.
19.
为提高短期风功率预测精度和预测的可控性,提出一种基于能量差优化变分模态分解和布谷鸟优化组合神经网络的短期风功率预测模型。采用能量差优化变分模态分解(EVMD)的模态数,将EVMD用于短期风功率分解,基于EVMD分解序列的不同模态特点,对非线性序列采用布谷鸟优化反向传播神经网络(CS-BPNN),对平稳序列采用自回归滑动平均模型(ARMA),并重构加权得到点预测值,并基于EVMD分解所丢失的序列信息构建核密度估计,在点预测模型的基础上,进行风功率的区间预测。将所提预测方法用于澳大利亚风电场的实际算例,实验结果表明,该方法可提高短期风功率预测的准确性。 相似文献