共查询到19条相似文献,搜索用时 62 毫秒
1.
氢能作为一种可燃烧的新型能源,凭借其清洁无污染等优点,被认为是人类从根本上解决能源与环境等全球性问题的理想替代能源.电解水是生产高纯度氢气的重要方法之一,也是现代清洁能源技术的重要组成部分.随着实际需求的不断增长,如何利用高效低耗的电催化剂来提升反应速率,已经成为当前新能源领域的研究重点之一.电解水反应由阴极析氢反应(HER)和阳极析氧反应(OER)两个半反应组成,其中HER反应相对容易进行;而相比于HER反应,OER反应动力学缓慢,是影响电解水效率的主要原因.为了提高电解水制氢的能量转化效率,高效OER电催化剂成为研究电解水制氢技术的关键因素.过渡金属催化剂由于其特殊的d轨道结构和在地球上丰富的储备量成为OER催化剂研究领域的热点,但是目前存在的主要问题是,与贵金属催化剂相比,过渡金属催化剂的催化活性较差.因此,发展一些高催化活性和高效稳定的电催化剂,成为该领域研究关注的重点.在过去的十余年间,硫化物、硒化物、磷化物和硼化物等非贵金属基OER电催化剂被大量研究并取得了长足的发展.在这些催化剂中,硫化物型电催化剂不仅具有成本优势,而且在析氧过电位、耐久性等方面正在接近甚至超越RuO2和IrO2等贵金属催化剂,颇具应用潜力.本文主要介绍了电解水析氧反应在不同电解质中的反应机理,从硫化物型OER电催化剂的物理化学性质入手,证实了硫化物型OER电催化剂在析氧反应中具有独特的优势,最后综述了有关硫化物型OER电催化剂在改进策略等方面的研究进展. 相似文献
2.
析氧反应(Oxygen Evolution Reaction, OER)在解决能源短缺和环境问题中扮演了重要角色, 但需要巨大的过电位克服缓慢的动力学势垒, 因此开发高效电催化剂成为不可或缺的一步。本工作应用密度泛函理论研究了α-MnO2(001)和Mo掺杂α-MnO2(001)的电催化析氧反应性能, 根据反应路径计算了吉布斯自由能、态密度和差分电荷密度。研究结果表明Mo掺杂可以有效调节α-MnO2(001)面的电子结构, 改善中间物和催化剂之间的脱吸附能力, 为OER提供更多的电子。吉布斯自由能结果表明Mo掺杂α-MnO2(001)体系中*OOH生成O2是发生OER的决速步骤, Mo掺杂降低了过电位, 产生的过电位为1.01 V, 表现出良好的析氧催化性能。 相似文献
3.
徐梽川 《SCIENCE CHINA Materials》2020,(1):3-7
本文首先简单回顾了电解水的发展历史以及碱性和酸性条件下电解水的电极材料特点.对于碱性条件下的电解水,电极材料以过渡金属氧化物为主.近年来,人们对于过渡金属氧化物的析氧反应开展了大量的研究,特别关注钙钛矿、尖晶石、氧氢氧化物等催化剂.析氧反应条件苛刻,一些氧化物催化剂会发生表面重构,转化为过渡金属氧氢氧化物.因此,对这些氧化物来讲,真正的催化剂表面是一个氧氢氧化物的表面.另一方面,一些氧化物在析氧反应中表现出较强的稳定性,一般认为这些氧化物的表面不会发生重构,因而没有氧氢氧化物的生成.一些已知的基于氧化物结构的活性描述参数也对该观点提供了实验和理论支持.最后,本文提出尚待回答的一个问题:在析氧反应中是否所有的过渡金属氧化物都会发生表面重构而生成一个氧氢氧化物的表面?不管以上问题的答案是什么,该如何设计预催化剂实现重构后的高活性表面将成为未来关注的热点之一. 相似文献
4.
为了研究钴镍电极在中性体系中的电催化性能和催化循环稳定性,在金属钛电极上采用电沉积方法制备了不同钴含量的镍涂层电极,通过X射线衍射技术、扫描电镜技术、恒电流极化曲线和循环伏安等测试技术,探讨了不同钴元素的添加量对镍涂层电极在中性体系中析氧电催化活性和循环稳定性的影响.结果表明,添加适量的钴元素细化了镀层晶粒,增大了电极比表面积,提高了电极的析氧催化活性,其中添加40g/L CoSO_4·5H_2O时涂层的晶粒最细,继续增加钴含量颗粒变大但形状多面,比表面积没有减小,对电极析氧催化性能影响不大;同时钴的添加不利于晶体的结晶,降低了电极表面状态的循环稳定性能. 相似文献
5.
金属/金属氧化物复合材料凭借其独特的界面和电子结构已被广泛设计合成,并应用于碱性溶液中电催化析氧反应的电催化剂.然而,如何设计并获得丰富的金属/金属氧化物界面和均匀分散的金属相仍是一个挑战.此外,金属和金属氧化物在增强电催化活性方面的协同机理依然不清晰.本文以金属氧化物为基体,通过锂诱导的转化反应,制备了具有丰富界面和... 相似文献
6.
7.
多铁材料具有巨大的潜力,可应用于新型磁电设备,如高密度非易失性存储等.在本工作中,我们报道了一种具有铁电性和铁磁性共存特性的新型二维铁掺杂硒化铟.实验结果显示,Fe原子在In原子位点进行了替位掺杂,Fe的含量约为3.22%,其化学式为Fe0.16In1.84Se3.基于密度泛函理论第一性原理计算预测,当Fe替代硒化铟中In的位置时,每个Fe原子的磁矩为5μB.我们通过量子干涉超导测试进一步证实了理论预测.磁性测量表明纯硒化铟是抗磁性的,而Fe0.16In1.84Se3表现出铁磁行为,在2 K时具有平行各向异性,居里温度约为8 K.此外,压电力响应测试表明Fe原子掺杂进入铁电硒化铟纳米薄片后仍保持稳定的室温铁电性.研究结果表明,层状多铁材料Fe0.16In1.84Se3在未来的纳米电子、磁性和光电器件中具有潜在的应用前景. 相似文献
8.
Fe-N/C催化剂在氧还原反应中的作用机理对于开发高效、可持续使用的非贵金属催化剂在聚合物电解质膜燃料电池中的应用至关重要,但目前仍存在很多的难以攻克的问题。为了揭示纳米结构与电化学活性的关系,本研究开发了一种具有高电化学活性的Fe-N/C氧还原催化剂,该催化剂含有Fe-Nx位点和被氮掺杂的碳纳米管包裹的Fe/Fe3C纳米晶体两种具有氧还原反应电化学活性的纳米结构。尽管不含贵金属铂,本研究合成的Fe-N/C催化剂在碱性条件下仍显示出较高的ORR活性,半波电势为0.86 V(vs RHE),质量活性为18.84 A/g(0.77 V(vs RHE),极限电流密度为–4.3 mA·cm–2。同时,电子转移数为3.7(0.2 V(vs RHE),说明Fe-N/C催化剂中4电子ORR反应的比例较高。石墨烯包覆的金属Fe/Fe3C纳米晶生长N-CNTs后,材料的导电性有所提高,并且Fe-Nx活性位点在Fe/Fe3C纳米颗粒表面分布均匀,改善了材料的电化学活性。本研究... 相似文献
9.
工业界普遍采用Haber-Bosch方法在高温(400~600℃)和高压(150~300 atm, 1 atm=0.101325 MPa)条件下催化氮气裂解和加氢而合成氨气(NH3),这不仅消耗大量能源,也给环境造成很大污染。为改变这种状况,探索常温常压条件下合成NH3的全新途径已成为研究热点。电催化还原N2合成NH3是尚待探索的重点方向之一。本研究利用密度泛函理论计算,探讨了过渡金属元素(如Fe, Nb, Mo, W, Ru)和非金属元素(如B, P, S)共掺杂石墨烯作为该方向催化剂的可行性。结果表明, Mo和S(Mo/S)共掺杂石墨烯在NH3合成中具有极低的电极电势(仅为0.47 V),其速率控制步骤涉及的中间产物为*NNH。NH3合成电势比析氢反应的电势(0.51 V)低,说明N2还原制备NH3具有选择性。经从头算的分子动力学计算验证,Mo/S共掺杂石墨烯体系在室温下具有良好的热力学稳定性。电子结构分析进一步揭示,过渡金属电子... 相似文献
10.
贵金属IrO2和RuO2被广泛认为是优异的析氧(OER)催化剂,但是高成本限制其应用与发展,故开发高效的非贵金属OER催化剂具有重大的实际意义和应用前景。采用简便的电化学法制备了一种三维异质结电极Co(OH)2/Cu(OH)2作为优良的OER催化剂。Co(OH)2/Cu(OH)2由于其三维异质结构,使其具有较大的比表面积和充足的活性位点,同时调节了表面Co的电子结构进而提高OER活性,表现出优良的催化性能。在1mol/L KOH溶液中,Co(OH)2/Cu(OH)2能在270mV的低过电位下达到10mA/cm2,并且能保持在100mA/cm2的大电流密度下较长时间进行OER反应,是一种优良的OER催化剂。 相似文献
11.
Perovskite oxides based on the alkaline earth metal lanthanum for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolytes are promising catalysts, but their catalytic activity and stability remain unsatisfactory. Here, we synthesized a series of LaFe1−xMnxO3 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) perovskite oxides by doping Mn into LaFeO3 (LF). The results show that the doping amount of Mn has a significant effect on the catalytic performance. When x = 0.5, the catalyst LaFe0.5Mn0.5O3 (LFM) exhibits the best performance. The limiting current density in 0.1 mol·L−1 KOH solution is 7 mA·cm−2, much larger than that of the commercial Pt/C catalyst (5.5 mA·cm−2). Meanwhile, the performance of the doped catalyst is also superior to that of commercial Pt/C in terms of the long-term durability. The excellent catalytic performance of LFM may be ascribed to its abundant O2−/O− species and low charge transfer resistance after doping the Mn element. 相似文献
12.
Jun Wu Zhiyu Ren Shichao Du Lingjun Kong Bowen Liu Wang Xi Jiaqing Zhu Honggang Fu 《Nano Research》2016,9(3):713-725
A cost-efficient and stable oxygen evolution electrocatalyst is essential for improving energy storage and conversion efficiencies. Herein, 2D nanosheets with randomly cross-linked CoNi layered double hydroxide (LDH) and small CoO nanocrystals were designed and synthesized via in situ reduction and interfacedirected assembly in air. The formation of CoNi LDH/CoO nanosheets was attributed to the strong extrusion of hydrated metal–oxide clusters driven by the interfacial tension. The obtained loose and porous nanosheets exhibited low crystallinity due to the presence of numerous defects. Owing to the orbital hybridization between metal 3d and O 2p orbitals, and electron transfer between metal atoms through Ni–O–Co, a number of Co and Ni atoms in the CoNi LDH present a high +3 valency. These unique characteristics result in a high density of oxygen evolution reaction (OER) active sites, improving the affinity between OH– and catalyst, and resulting in a large accessible surface area and permeable channels for ion adsorption and transport. Therefore, the resulting nanosheets exhibited high catalytic activity towards the OER. The CoNi LDH/CoO featured a low onset potential of 1.48 V in alkaline medium, and required an overpotential of only 300 mV at a current density of 10 mA·cm–2, while displaying good stability in accelerated durability tests. 相似文献
13.
Al-Mamun Mohammad Yin Huajie Liu Porun Su Xintai Zhang Haimin Yang Huagui Wang Dan Tang Zhiyong Wang Yun Zhao Huijun 《Nano Research》2017,10(10):3522-3533
The activity and durability of electrocatalysts are important factors in their practical applications,such as electrocatalytic oxygen evolution reactions (OERs)used in water splitting cells and metal-air batteries.In this study,a novel electrocatalyst,comprising few-layered graphitic carbon (~5 atomic layers) encapsulated heazlewoodite (Ni3S2@C) nanoparticles (NPs),was designed and synthesized using a one-step solid phase pyrolysis method.In the OER test,the Ni3S2@C catalyst exhibited an overpotential of 298 mV at a current density of 10 mA·cm-2,a Tafel slope of 51.3 mV·dec-1,and charge transfer resistance of 22.0 Ω,which were better than those of benchmark RuO2 and most nickelsulfide-based catalysts previously reported.This improved performance was ascribed to the high electronic conductivity of the graphitic carbon encapsulating layers.Moreover,the encapsulation of graphitic carbon layers provided superb stability without noticeable oxidation or depletion of Ni3S2 NPs within the nanocomposite.Therefore,the strategy introduced in this work can benefit the development of highly stable metal sulfide electrocatalysts for energy conversion and storage applications,without sacrificing electrocatalytic activity. 相似文献
14.
Thanh-Tung Le Xiao Liu Peijun Xin Qing Wang Chunyan Gao Ye Wu Yong Jiang Zhangjun Hu Shoushuang Huang Zhiwen Chen 《材料科学技术学报》2021,74(15):168-175
Developing low-cost,efficient,and stable non-precious-metal electrocatalysts with controlled crystal structure,morphology and compositions are highly desirable for hydrogen and oxygen evolution reactions.Herein,a series of phosphorus-doped Fe7S8 nanowires integrated within carbon (P-Fe7S8@C) are rationally synthesized via a one-step phosphorization of one-dimensional (1D) Fe-based organicinorganic nanowires.The as-obtained P-Fe7S8@C catalysts with modified electronic configurations present typical porous structure,providing plentiful active sites for rapid reaction kinetics.Density functional calculations demonstrate that the doping Fe7S8 with P can effectively enhance the electron density of Fe7S8 around the Fermi level and weaken the Fe-H bonding,leading to the decrease of adsorption free energy barrier on active sites.As a result,the optimal catalyst of P-Fe7S8-600@C exhibits a relatively low overpotential of 136 mV for hydrogen evolution reaction (HER) to reach the current density of 10 mA/cm2,and a significantly low overpotential of 210 mV for oxygen evolution reaction (OER) at 20mA/cm2 in alkaline media.The work presented here may pave the way to design and synthesis of other prominent Fe-based catalysts for water splitting via electronic regulation. 相似文献
15.
16.
锌-空气电池的阴极氧还原反应(ORR)动力迟缓,急需开发活性高、成本低的阴极催化剂。本文采用两次热解法合成了沸石咪唑酯骨架结构(ZIF)衍生的多孔碳负载Co、Ni双金属硫化物笼状纳米颗粒材料,通过SEM、XRD、Raman、N2吸附比表面分析、电化学分析等对负载Co、Ni笼状双金属硫化物的多孔碳进行形貌、结构表征以及性能测试。结果表明,金属硫化物导电性能优异,且热解后的多孔碳结构会暴露更多活性位点,具有优异的电催化活性,ORR性能测试中,其半波电位可达0.89 V,优于商用Pt/C催化剂的0.85 V。OER性能在电流密度为10 mA/cm2时电位为1.79 V,与商用IrO2(电位可达1.68 V)相当。本文制备的笼状双金属硫化物具有优异的性能,可作为锌-空气电池的优异双功能电催化剂。 相似文献
17.
Chemical Valence‐Dependent Electrocatalytic Activity for Oxygen Evolution Reaction: A Case of Nickel Sulfides Hybridized with N and S Co‐Doped Carbon Nanoparticles 下载免费PDF全文
Hongchao Yang Changhong Wang Yejun Zhang Qiangbin Wang 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(8)
Exploration of the relationship between electrocatalytic activities and their chemical valence is very important in rational design of high‐efficient electrocatalysts. A series of porous nickel sulfides hybridized with N and S co‐doped carbon nanoparticles (NixSy‐NSCs) with different chemical valences of Ni, Ni9S8‐NSCs, Ni9S8‐NiS1.03‐NSCs, and NiS1.03‐NSCs are successfully fabricated, and their electrocatalytic performances as oxygen evolution reaction electrocatalysts are systematically investigated. The NixSy‐NSCs are obtained via a two‐step reaction including a low‐temperature synthesis of Ni‐Cys precursor followed by thermal decomposing of the precursor in Ar atmosphere. By controlling the sulfidation process during the formation of NixSy‐NSCs, Ni9S8‐NSCs, Ni9S8‐NiS1.03‐NSCs, and NiS1.03‐NSCs are obtained, respectively, giving rise to the increase of high‐valence Ni component, and resulting in gradually enhanced oxygen evolution reaction electrocatalytic activities. In particular, the NiS1.03‐NSCs show an exceptional low overpotential of ≈270 mV versus reversible hydrogen electrode at a current density of 10 mA cm?2 and a small Tafel slope of 68.9 mV dec?1 with mass loading of 0.25 mg cm?2 in 1 m KOH and their catalytic activities remained for at least 10 h, which surpass the state‐of‐the‐art IrO2, RuO2, and Ni‐based electrocatalysts. 相似文献
18.
Ma Luo Zhao Cai Cheng Wang Yongmin Bi Li Qian Yongchao Hao Li Li Yun Kuang Yaping Li Xiaodong Lei Ziyang Huo Wen Liu Hailiang Wang Xiaoming Sun Xue Duan 《Nano Research》2017,10(5):1732-1739
Rational design and controlled fabrication of efficient and cost-effective electrodes for the oxygen evolution reaction (OER) are critical for addressing the unprecedented energy crisis.Nickel-iron layered double hydroxides (NiFe-LDHs) with specific interlayer anions (i.e.phosphate,phosphite,and hypophosphite) were fabricated by a co-precipitation method and investigated as oxygen evolution electrocatalysts.Intercalation of the phosphorus oxoanion enhanced the OER activity in an alkaline solution;the optimal performance (i.e.,a low onset potential of 215 mV,a small Tafel slope of 37.7 mV/dec,and stable electrochemical behavior) was achieved with the hypophosphite-intercalated NiFe-LDH catalyst,demonstrating dramatic enhancement over the traditional carbonate-intercalated NiFe-LDH in terms of activity and durability.This enhanced performance is attributed to the interaction between the intercalated phosphorous oxoanions and the edge-sharing MO6 (M =Ni,Fe) layers,which modifies the surface electronic structure of the Ni sites.This concept should be inspiring for the design of more effective LDH-based oxygen evolution electrocatalysts. 相似文献
19.
High gravimetric energy density, earth-abundance, and environmental friendliness of hydrogen sources have inspired the utilization of hydrogen fuel as a clean alternative to fossil fuels. Hydrogen evolution reaction (HER), a half reaction of water splitting, is crucial to the low-cost production of pure H2 fuels but necessitates the use of electrocatalysts to expedite reaction kinetics. Owing to the availability of low-cost oxygen evolution reaction (OER) catalysts for the counter electrode in alkaline media and the lack of low-cost OER catalysts in acidic media, researchers have focused on developing HER catalysts in alkaline media with high activity and stability. Nickel is well-known as an HER catalyst and continuous efforts have been undertaken to improve Ni-based catalysts as alkaline electrolyzers. In this review, we summarize earlier studies of HER activity and mechanism on Ni surfaces, along with recent progress in the optimization of the Ni-based catalysts using various modern techniques. Recently developed Ni-based HER catalysts are categorized according to their chemical nature, and the advantages as well as limitations of each category are discussed. Among all Ni-based catalysts, Ni-based alloys and Ni-based hetero-structure exhibit the most promising electrocatalytic activity and stability owing to the fine-tuning of their surface adsorption properties via a synergistic nearby element or domain. Finally, selected applications of the developed Ni-based HER catalysts are highlighted, such as water splitting, the chloralkali process, and microbial electrolysis cell. 相似文献