首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spontaneously formation of epitaxial GaAs quantum-dot pairs was demonstrated on an AlGaAs surface using Ga droplets as a Ga nano-source. The dot pair formation was attributed to the anisotropy of surface diffusion during high-temperature droplet epitaxy.   相似文献   

2.
ABSTRACT: In the present work, ZnO quantum dots (QDs) have been prepared by the sol-gel method, and the performance of the QDs have been improved. The effect of Cd concentration on the structural and luminescent properties of the QDs, as well as the effect of the mass ratio of trioctylphosphine oxide (TOPO)/octadecylamine (ODA), has been investigated. The ZnO and Cd-doped ZnO QDs have hexagonal wurtzite structures and are 3~6 nm in diameter. When the Cd content was increased, the QD particle size was reduced; this effect was confirmed in the corresponding ultraviolet-visible (UV) spectra. The fluorescence intensity was simultaneously enhanced significantly. Both the UV and fluorescence spectra were blue-shifted. The luminous intensity was further enhanced when the QDs were modified with TOPO/ODA. FTIR and XRD techniques proved that the polymer successfully coated the surfaces of the QDs. A TOPO/ODA mass ratio of 1:2 was determined to result in the best optical performance among the different ratios examined. The results showed that the described synthetic method is appropriate for the preparation of doped QDs with a high fluorescence quantum efficiency.  相似文献   

3.
Terbium (0, 2, and 4?at%)-doped ZnS quantum dots (QDs) were synthesized via a solvothermal method. The crystal structures of the synthesized QDs were determined to be zinc blend by X-ray powder diffraction (XRD) and Raman analyses. Transmission electron microscopy (TEM) studies revealed that particles with a mean size of 2–4?nm were formed. An X-ray photo electron spectroscopy (XPS) examination disclosed the existence of terbium with a trivalent state in the ZnS host lattice. The absorption bands of all QDs were located around 325?nm (3.81?eV) and were higher than that of the bulk ZnS band gap (3.67?eV), consistent with the quantum confinement effect. The photoluminescence spectra of the terbium-doped samples displayed five emission peaks at 467?nm (5D47F3), 491?nm (5D47F6), 460?nm (5D47F5), 484?nm (5D47F4), and 530?nm (5D47F3), respectively. The terbium-doped QDs exhibited a higher photocatalytic activity during the degradation of crystal violet dye under UV-light illumination compared to the undoped ZnS QDs. These interesting properties of terbium-doped ZnS QDs are potentially useful for both luminescent and photocatalysis applications.  相似文献   

4.
Au/SnO2 quantum dots (AuSQDs) were synthesized, and the effects of annealing on their structural and optical properties were examined. Significant changes were observed in the bandgap and surface plasmon resonance (SPR) of the AuSQDs after thermal treatment at different temperatures (400, 500, and 600 °C). The properties of the as-prepared and annealed samples were characterized via X-ray diffraction analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy, and diffuse reflectance spectroscopy. Annealing reduced the bandgap from 3.03 to 2.33 eV and increased the crystallinity while maintaining an average crystallite size below 10 nm. XPS valence band (VB) profiles provided information regarding the VB edge potentials, which helped to determine the conduction band edge potentials. An enhancement in the SPR of the Au nanoparticles was observed for AuSQD-500, which had the smallest bandgap among the samples investigated.  相似文献   

5.
Nanoholes with a depth in the range of tens of nanometers can be formed on GaAs(001) surfaces at a temperature of 500°C by local etching after Ga droplet formation. In this work, we demonstrate that the local etching or nanodrilling process starts when the Ga droplets are exposed to arsenic. The essential role of arsenic in nanohole formation is demonstrated sequentially, from the initial Ga droplets to the final stage consisting of nanoholes surrounded by ringlike structures at the surface and Ga droplets consumed. The kinetics of local etching depends on the arsenic flux intensity, while the ringlike structures are basically the same as those formed underneath the droplets in the absence of arsenic. These structures show motifs with well-defined crystalline facets that correspond to those expected from surface energy minimization. These experimental results are qualitatively analyzed for a better understanding of the nanohole formation underlying processes.  相似文献   

6.
Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy.  相似文献   

7.
In this work, we present results on the formation of vertical molecule structures formed by two vertically aligned InAs quantum dots (QD) in which a deliberate control of energy emission is achieved. The emission energy of the first layer of QD forming the molecule can be tuned by the deposition of controlled amounts of InAs at a nanohole template formed by GaAs droplet epitaxy. The QD of the second layer are formed directly on top of the buried ones by a strain-driven process. In this way, either symmetric or asymmetric vertically coupled structures can be obtained. As a characteristic when using a droplet epitaxy patterning process, the density of quantum dot molecules finally obtained is low enough (2 × 108 cm−2) to permit their integration as active elements in advanced photonic devices where spectroscopic studies at the single nanostructure level are required.  相似文献   

8.
Experimental results of the local droplet etching technique for the self-assembled formation of nanoholes and quantum rings on semiconductor surfaces are discussed. Dependent on the sample design and the process parameters, filling of nanoholes in AlGaAs generates strain-free GaAs quantum dots with either broadband optical emission or sharp photoluminescence (PL) lines. Broadband emission is found for samples with completely filled flat holes, which have a very broad depth distribution. On the other hand, partly filling of deep holes yield highly uniform quantum dots with very sharp PL lines.  相似文献   

9.
Four-bilayer Ge quantum dots (QDs) with Si spacers were grown on Si(001) substrates by ultrahigh vacuum chemical vapor deposition. In three samples, all Ge QDs were grown at 520 °C, while Si spacers were grown at various temperatures (520 °C, 550 °C, and 580 °C). Enhancement and redshift of room temperature photoluminescence (PL) were observed from the samples in which Si spacers were grown at a higher temperature. The enhancement of PL is explained by higher effective electrons capturing in the larger size Ge QDs. Quantum confinement of the Ge QDs is responsible for the redshift of PL spectra. The Ge QDs’ size and content were investigated by atomic force microscopy and Raman scattering measurements.  相似文献   

10.
ABSTRACT: We report the temperature-dependent photoluminescence of single site-controlled and self-assembled InAs quantum dots. We have used nanoimprint lithography for patterning GaAs(100) templates and molecular beam epitaxy for quantum dot deposition. We show that the influence of the temperature on the photoluminescence properties is similar for quantum dots on etched nanopatterns and randomly positioned quantum dots on planar surfaces. The photoluminescence properties indicate that the prepatterning does not degrade the radiative recombination rate for the site-controlled quantum dots.  相似文献   

11.
A new strategy for in situ preparation of highly fluorescent CdTe quantum dots (QDs) with 3-mercaptopropionic acid (MPA) and hyperbranched poly(amidoamine)s (HPAMAM) as co-stabilizers was proposed in this paper. MPA and HPAMAM were added in turn to coordinate Cd2+. After adding NaHTe and further microwave irradiation, fluorescent CdTe QDs stabilized by MPA and HPAMAM were obtained. Such a strategy avoids the aftertreatment of thiol-stabilized QDs in their bioapplication and provides an opportunity for direct biomedical use of QDs due to the existence of biocompatible HPAMAM. The resulting CdTe QDs combine the mechanical, biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs together.  相似文献   

12.
半导体纳米晶体制备及应用进展   总被引:1,自引:0,他引:1  
综述了量子点的制备及应用进展  相似文献   

13.
《Ceramics International》2022,48(1):503-507
l-cysteine (L-cys) modified ZnS (LZS) quantum dots (QDs) were synthesized by a two-step way. The effects of LZS QDs on the phenotype, biomass, morphology and extracellular protein content of Aspergillus oryzae (A. oryzae) were studied in detail for the first time. The results illustrated that both uncoated and coated QDs had a cubic blend ZnS structure, and the particle size was about 4.0 and 4.3 nm, respectively. It was found that LZS QDs acted as an activator to stimulate the growth of A. oryzae in both solid and liquid media, and the biomass with 50 μg/mL (25 μg/mL) QDs in solid (liquid) medium was the highest and was about 1.65 (3.74) times higher than that in control medium (without QDs). The data of ultraviolet–visible (UV–Vis) revealed that the protein concentration of A. oryzae was 824.904 and 467.748 μg/mL relating to liquid medium with and without QDs, respectively. This work can provide a new way to increase the production of A. oryzae or microorganisms.  相似文献   

14.
We present a theoretical study of photoluminescence from exciton states in InAs/GaAs asymmetric dot pairs, where interdot coupling is reached via magnetic field in the Faraday configuration. Electronic structure is obtained by finite element calculations, and Coulomb effects are included using a perturbative approach. According to our simulated spectra, bright excited states may become optically accessible at low temperatures in hybridization regimes where intermixing with the ground state is achieved. Our results show effective magnetic control on the energy, polarization and intensity of emitted light, and suggest these coupled nanostructures as relevant candidates for implementation of quantum optoelectronic devices.  相似文献   

15.
We present how CdTe0.5Se0.5 cores can be coated with Cd0.5Zn0.5S shells at relatively low temperature (around 200°C) via facile synthesis using organic ammine ligands. The cores were firstly fabricated via a less toxic procedure using CdO, trioctylphosphine (TOP), Se, Te, and trioctylamine. The cores with small sizes (3.2-3.5 nm) revealed green and yellow photoluminescence (PL) and spherical morphologies. Hydrophobic core/shell CdTe0.5Se0.5/Cd0.5Zn0.5S quantum dots (QDs) with tunable PL between green and near-infrared (a maximum PL peak wavelength of 735 nm) were then created through a facile shell coating procedure using trioctylphosphine selenium with cadmium and zinc acetate. The QDs exhibited high PL efficiencies up to 50% because of the formation of a protective Cd0.5Zn0.5S shell on the CdTe0.5Se0.5 core, even though the PL efficiency of the cores is low (≤1%). Namely, the slow growth process of the shell plays an important role for getting high PL efficiencies. The properties of the QDs are largely determined by the properties of CdTe0.5Se0.5 cores and shells preparation conditions such as reaction temperature and time. The core/shell QDs exhibited a small size diameter. For example, the average diameter of the QDs with a PL peak wavelength of 735 nm is 6.1 nm. Small size and tunable bright PL makes the QDs utilizable as bioprobes because the size of QD-based bioprobes is considered as the major limitation for their broad applications in biological imaging.  相似文献   

16.
Ordering phenomena related to the self-assembly of InAs quantum dots (QD) grown on GaAs(001) substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the [110] directions and are bounded by {137} facets, while domes have a multi-facetted shape. By changing the growth rates, we are able to control the size and size homogeneity of freestanding QDs. QDs grown by using low growth rate are characterized by larger sizes and a narrower size distribution. The homogeneity of buried QDs is measured by photoluminescence spectroscopy and can be improved by low temperature overgrowth. The overgrowth induces the formation of nanostructures on the surface. The fabrication of self-assembled nanoholes, which are used as a template to induce short-range positioning of QDs, is also investigated. The growth of closely spaced QDs (QD molecules) containing 2–6 QDs per QD molecule is discussed. Finally, the long-range positioning of self-assembled QDs, which can be achieved by the growth on patterned substrates, is demonstrated. Lateral QD replication observed during growth of three-dimensional QD crystals is reported.  相似文献   

17.
ABSTRACT: The authors report single-photon emission from InGaAs quantum dots grown by droplet epitaxy on (100) GaAs substrates using a solid-source molecular beam epitaxy system at elevated substrate temperatures above 400 [DEGREE SIGN]C without post-growth annealing. High-resolution micro-photoluminescence spectroscopy exhibits sharp excitonic emissions with lifetimes ranging from 0.7 to 1.1 ns. The coherence properties of the emitted photons are investigated by measuring the first-order field correlation function.  相似文献   

18.
We have studied the photoluminescence and Raman spectra of a system consisting of a polystyrene latex microsphere coated by CdTe colloidal quantum dots. The cavity-induced enhancement of the Raman scattering allows the observation of Raman spectra from only a monolayer of CdTe quantum dots. Periodic structure with very narrow peaks in the photoluminescence spectra of a single microsphere was detected both in the Stokes and anti-Stokes spectral regions, arising from the coupling between the emission of quantum dots and spherical cavity modes.  相似文献   

19.
We have fabricated CsPbBr3 perovskite quantum dots (QDs) in a multi-component borate glass by melt-quenching technique. Transmission electron microscopy (TEM) reveals a cubic phase CsPbBr3 crystal for QDs. As the treatment temperature or the treatment time duration increases, the photoluminescence (PL) peak shifts to long wavelength in the range of 510 to 525 nm, and the full width at half-maximum varies in the range of 24 to 18 nm. The absorption edge shifts to low energy side in the range of 2.54 to 2.41 eV. The different photoluminescence excitation spectra (PLE) reflect the change of microstructure for different samples. The PL peak wavelength and line-shape are independent of excitation wavelength. These results of spectra show typical exciton emission characteristics. As treatment conditions strengthens, photoluminescence quantum yield (PLQY) first increases and then decreases, having the best PLQY 86.9%. Bi-exponential fitting curves show that short lifetime τ1 continuously decreases. Long lifetime τ2, weight for long lifetime component, and average lifetime τavg first increase and then decrease. The PLQY values are affected by both τ1 and τ2, which are relative to the crystal quality in the interior and the surface of QDs, respectively. The high PLQY value corresponds to medium treatment condition, which is attributed to a balanced effect of crystal quality in interior and the surface of QDs.  相似文献   

20.
In this work, we study metal droplets on a semiconductor surface that are the initial stage for both droplet epitaxy and local droplet etching. The distributions of droplet geometrical parameters such as height, radius and volume help to understand the droplet formation that strongly influences subsequent nanohole etching. To investigate the etching and intermixing processes, we offer a new method of wetting angle analysis. The aspect ratio that is defined as the ratio of the height to radius was used as an estimation of wetting angle which depends on the droplet material. The investigation of the wetting angle and the estimation of indium content revealed significant materials intermixing during the deposition time. AFM measurements reveal the presence of two droplet groups that is in agreement with nanohole investigations. To explain this observation, we consider arsenic evaporation and consequent change in the initial substrate. On the basis of our analysis, we suggest the model of droplet evolution and the formation of two droplet groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号