首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

2.
This work presents an experimental study of an ammonia–water absorption refrigeration system using the exhaust of an internal combustion engine as energy source. The exhaust gas energy availability and the impact of the absorption refrigeration system on engine performance, exhaust emissions, and power economy are evaluated. A production automotive engine was tested in a bench test dynamometer, with the absorption refrigeration system adapted to the exhaust pipe. The engine was tested for 25%, 50%, 75% and wide-open throttle valve. The refrigerator reached a steady state temperature between 4 and 13 °C about 3 h after system start up, depending on engine throttle valve opening. The calculated exhaust gas energy availability suggests the cooling capacity can be highly improved for a dedicated system. Exhaust hydrocarbon emissions were higher when the refrigeration system was installed in the engine exhaust, but carbon monoxide emissions were reduced, while carbon dioxide concentration remained practically unaltered.  相似文献   

3.
Spark-ignition engines are still a competitive solution in a great number of applications. European manufacturers are all involved in the effort of improving fuel economy, at least at some engine operating points while meeting, of course, the pollutant emission standards.  相似文献   

4.
With higher rate of depletion of the non-renewable fuels, the quest for an appropriate alternative fuel has gathered great momentum. Though diesel engines are the most trusted power sources in the transportation industry, due to stringent emission norms and rapid depletion of petroleum resources there has been a continuous effort to use alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has its own benefits and limitations in its use as a conventional fuel in automotive engine system.In the present investigation, hydrogen-enriched air is used as intake charge in a diesel engine adopting exhaust gas recirculation (EGR) technique with hydrogen flow rate at 20 l/min. Experiments are conducted in a single-cylinder, four-stroke, water-cooled, direct-injection diesel engine coupled to an electrical generator. Performance parameters such as specific energy consumption, brake thermal efficiency are determined and emissions such as oxides of nitrogen, hydrocarbon, carbon monoxide, particulate matter, smoke and exhaust gas temperature are measured. Usage of hydrogen in dual fuel mode with EGR technique results in lowered smoke level, particulate and NOx emissions.  相似文献   

5.
Hydrogen has shown potential for improving the combustion and emission characteristics of the spark ignition (SI) dual-fuel engine. To reduce the additional NOx emissions caused by hydrogen direct injection, in this research, the cooperative control of the addition of hydrogen with exhaust gas recirculation (EGR) in the hydrogen/gasoline combined injection engine was investigated. The results indicate that both the addition of hydrogen and the use of EGR can increase the brake mean effective pressure (BMEP). As the αH2 value increases from 0% to 25%, the maximum BMEP increases by 9%, 12.70%, 16.50%, 11.30%, and 8.20%, respectively, compared with the value without EGR at λ = 1.2. The CA0-10 tends to increase with increases in the EGR rate. However, the effect of EGR in increasing the CA0-10 can be offset by the addition of 15% hydrogen at λ = 1.2. Measurements of the coefficient of variation of the indicated mean effective pressure (COVIMEP) indicate that the addition of hydrogen can effectively extend the EGR limit. Regarding gaseous emissions, NOx emissions, after the introduction of EGR and the addition of hydrogen, are lower than those of pure gasoline without EGR. An 18% EGR rate yields a significant reduction in NOx, reaching maximum decreases of about 82.7%, 77.8%, and 60% compared to values without EGR at λ = 1.0, 1.2, and 1.4, respectively. As the EGR rate increases, the hydrocarbon (HC) emissions continuously increase, whereas a blend of 5% hydrogen can significantly reduce the HC emissions at high EGR rates at λ = 1.4. Finally, according to combustion and emissions, the coupling of a 25% addition of hydrogen with 30% EGR at λ = 1.2, and the coupling of a 20% addition of hydrogen with an 18% EGR rate at λ = 1.4 yield the best results.  相似文献   

6.
Additional consumption of fuel in an intense traffic condition is inevitable. Excess fuel consumption may be avoided, if an optimal driving strategy is implemented subject to the surrounding condition of a vehicle and existing constraints. Development of an optimal driving strategy has been the subject of eco-driving. A model of optimal driving strategy has been developed and it has been applied for assessment of eco-driving rules. The model may be categorized as an optimal control and the objective function is minimization of fuel consumption in a given route. Vehicle speed and gear ratio are identified as control variables. The effect of working load has been considered according three engine running processes of Idle, part-load and wide open throttle. The model has then been applied to identify the optimal driving strategy of a vehicle in different traffic congestion based on eco-driving rules.  相似文献   

7.
There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers.  相似文献   

8.
Backfire is one of the major technical issues in a port injection type hydrogen fuelled spark ignition engine. It is an abnormal combustion phenomenon (pre-ignition) that takes place in combustion chamber and intake manifold during suction stroke. The flame propagates toward the upstream of the intake manifold from combustion chamber during backfire and thus can damage the intake and fuel supply systems of the engine, and stall the engine operation. The main cause of backfire could be the presence of any hot spot, lubricating oil particle's traces (HC and CO due to evaporation of the oil) and hot residual exhaust gas present in the combustion chamber during suction stroke which could act as an ignition source for fresh incoming charge. Monitoring the temperatures of the lubricating oil and exhaust gas during engine operation can reduce the probability of backfire. This was achieved by developing an electronic device which delays the injection timing of hydrogen fuel with the inputs of engine oil temperature (Tlube oil) and exhaust gas temperature (Texh). It was observed from the experimental results that the threshold values of Tlube oil and Texh were 85 °C and 540 °C respectively beyond which backfire occurred at equivalence ratio (φ) of 0.82. The developed device works based on the algorithm that retards the hydrogen injection to 40 0aTDC whenever the temperatures (Tlube oil and Texh) reached to the above mentioned values and thus the backfire was controlled. Delaying injection of hydrogen increased the time period at which only air is inducted during the early part of the suction stroke, this allows cooling of the available hot spots in the combustion chamber, hence the probability of backfire would be reduced.  相似文献   

9.
Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production and is used on most modern high-speed direct injection (HSDI) diesel engines. However EGR has different effects on combustion and emissions production that are difficult to distinguish (increase of intake temperature, delay of rate of heat release (ROHR), decrease of peak heat release, decrease in O2 concentration (and thus of global air/fuel ratio (AFR)) and flame temperature, increase of lift-off length, etc.), and thus the influence of EGR on NOx and particulate matter (PM) emissions is not perfectly understood, especially under high EGR rates. An experimental study has been conducted on a 2.0 l HSDI automotive diesel engine under low-load and part load conditions in order to distinguish and quantify some effects of EGR on combustion and NOx/PM emissions. The increase of inlet temperature with EGR has contrary effects on combustion and emissions, thus sometimes giving opposite tendencies as traditionally observed, as, for example, the reduction of NOx emissions with increased inlet temperature. For a purely diffusion combustion the ROHR is unchanged when the AFR is maintained when changing in-cylinder ambient gas properties (temperature or EGR rate). At low-load conditions, use of high EGR rates at constant boost pressure is a way to drastically reduce NOx and PM emissions but with an increase of brake-specific fuel consumption (BSFC) and other emissions (CO and hydrocarbon), whereas EGR at constant AFR may drastically reduce NOx emissions without important penalty on BSFC and soot emissions but is limited by the turbocharging system.  相似文献   

10.
Low energy buildings have attracted lots of attention in recent years. Most of the research is focused on the building construction or alternative energy sources. In contrary, this paper presents a general methodology of minimizing energy consumption using current energy sources and minimal retrofitting, but instead making use of advanced control techniques. We focus on the analysis of energy savings that can be achieved in a building heating system by applying model predictive control (MPC) and using weather predictions. The basic formulation of MPC is described with emphasis on the building control application and tested in a two months experiment performed on a real building in Prague, Czech Republic.  相似文献   

11.
Natural circulation solar water heating systems are available in varying collector geometries (and materials), storage tank capacities and specifications of individual components. Though theoretical and experimental studies including the test procedures are available to estimate the performances of these systems, detailed experimental studies showing the temperature profiles of the absorber plate, water temperature in the riser and water flow in the riser are few. This paper presents details of experimental observations of temperature and flow distribution in a natural circulation solar water heating system and its comparison with the theoretical models. The measured profile of the absorber temperature near the riser tubes (near the bottom and top headers) conforms well with the theoretical models. The values at the riser tubes near the collector inlet are found to be generally much higher than those at the other risers on a clear day, while on cloudy days, these temperatures are uniform. The mean absorber plate and mean fluid temperature during a day has been estimated and compared with theoretical models. The temperature of water near the riser outlets was found to be fairly uniform especially in cloudy and partly cloudy days at a given plane during a day. The temperature of water in the riser depends on its flow rate. Measurements of glass temperature were also carried out.  相似文献   

12.
对利用机车尾气进行燃油系统加热进行定量分析,提出加热系统不影响增压器工作的一个保守判据,并对加热系统进行效能优化。结果表明:加热系统具有广泛的实用性,通过增加用能终端,适当扩展系统的用途以及优化设计参数,可显著提高加热系统性能。  相似文献   

13.
CA498车用柴油机EGR的试验研究   总被引:16,自引:0,他引:16  
进行了不同工况下EGP率对发动机排放和性能影响的试验研究。在试验中按ECE R49十三工况法研究了有EGR时NOx和微粒的变化规律,并对柴油机性能进行了分析。在综合考虑EGR对各工况的排放及性能影响的基础上,确定十三工况中应进行EGR的工况及相应的最佳EGR率。  相似文献   

14.
某天然气净化厂需设置一套供热系统,为工艺装置及冬季采暖提供热负荷.根据热用户对用热参数的要求,可采用蒸汽锅炉供热系统或导热油加热炉供热系统.从投资、运行、管理及维护等方面对两种供热系统进行方案比较.导热油加热炉供热系统具有以下优点:运行和维护费用低、不消耗水资源、可露天布置、导热油倾点低,适合当地严寒气象条件.推荐选用...  相似文献   

15.
在一台火花点火天然气发动机上开展了不同掺氢比和EGR率下发动机性能和排放的试验研究。研究结果表明:引入EGR后发动机输出功率下降,但掺氢可以提高大EGR工况下发动机的输出功率。有效热效率随EGR率的增大呈现先升高后降低的趋势;小EGR率下,有效热效率随掺氢比的增加而降低,而大EGR率下,有效热效率随掺氢比的增大而升高。天然气掺氢后NOx排放增加,EGR引入使NOx排放降低,这种降低作用在大掺氢比下更显著。因此,相对于小EGR率工况,大EGR率工况下天然气掺氢表现出更好的性能和排放效果。HC排放随EGR率的增大而增加,随掺氢比的增加而降低。CO和CO2都随EGR率的增加变化不大,随掺氢比的增加而降低。研究表明,天然气掺氢结合EGR可实现火花点火发动机高效低污染燃烧,并能满足欧Ⅳ排放标准。  相似文献   

16.
This paper shows the results of the tests carried out in a naturally aspirated vehicle spark ignition engine fueled with different hydrogen and methane blends. The percentage of hydrogen tested was up to 50% by volume in methane. The tests were carried out in a wide range of speeds with the original ignition timing of the engine. Also, lean equivalence ratios were proved. Just the fuel injection map was modified for each fuel blend and equivalence ratio tested. In this paper, the results of thermal efficiency and pollutant emissions achieved at full load have been compared with the corresponding gasoline test results. The best balance between thermal efficiency and pollutant emissions was observed with the 30% hydrogen and 70% methane fuel blend.  相似文献   

17.
This paper presents a thermodynamic model to evaluate the coefficient of performance (COP) of an air-cooled screw chiller under various operating conditions. The model accounts for the real process phenomena, including the capacity control of screw compressors and variations in the heat-transfer coefficients of an evaporator and a condenser at part load. It also contains an algorithm to determine how the condenser fans are staged in response to a set-point condensing temperature. The model parameters are identified, based on the performance data of chiller specifications. The chiller model is validated using a wide range of operating data of an air-cooled screw chiller. The difference between the measured and modelled COPs is within ±10% for 86% of the data points. The chiller’s COP can increase by up to 115% when the set-point condensing temperature is adjusted, based on any given outdoor temperature. Having identified the variation in the chiller’s COP, a suitable strategy is proposed for air-cooled screw chillers to operate at maximum efficiency as much as possible when they have to satisfy a building’s cooling-load.  相似文献   

18.
This paper analyses how to apply mist pre-cooling coupled with condensing temperature control to enhance the coefficient of performance (COP) of an air-cooled chiller system and hence achieve electricity savings. A modified DOE-2.1E chiller model was developed to predict the change of chiller COP due to various set points of condensing temperature and pre-cooling of air stream entering the condenser. The model was calibrated by using manufacturer’s data and used to estimate the annual electricity consumption of a chiller system serving an office building under four operating schemes: traditional head pressure control (HPC); HPC with a fixed mist generation rate; condensing temperature control (CTC) with a fixed mist generation rate; CTC with an optimal mist generation rate. It was estimated that using optimal mist control with CTC could achieve a 19.84% reduction in the annual electricity consumption of the system. Considerations when using mist pre-cooling to maximize electricity savings have been discussed.  相似文献   

19.
A coupled boundary element method (BEM) and finite difference method (FDM) are applied to solve conjugate heat transfer problem of a two-dimensional air-cooled turbine blade boundary layer. A loosely coupled strategy is adopted, in which each set of field equations is solved to provide boundary conditions for the other. The Navier-Stokes equations are solved by HIT-NS code. In this code, the FDM is adopted and is used to resolve the convective heat transfer in the fluid region. The BEM code is used to resolve the conduction heat transfer in the solid region. An iterated convergence criterion is the continuity of temperature and heat flux at the fluid-solid interface. The numerical results from the BEM adopted in this paper are in good agreement with the results of analytical solution and the results of commercial code, such as Fluent 6.2. The BEM avoids the complicated mesh needed in other computation method and saves the computation time. The results prove that the BEM adopted in this paper can give the same precision in numerical results with less boundary points. Comparing the conjugate results with the numerical results of an adiabatic wall flow solution, it reveals a significant difference in the distribution of metal temperatures. The results from conjugate heat transfer analysis are more accurate and they are closer to realistic thermal environment of turbines.  相似文献   

20.
实验研究了一款小型汽油机在不同负荷下,使用不同EGR率时,其动力性、经济性和NOx排放特性的变化规律,确定了各个工况下发动机最佳EGR率,得出在较大负荷下,EGR阀开度为30°时可以使动力性、经济性在变化不大的情况下,NO降低60%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号