首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了有效平滑风电出力,提出一种针对混合储能系统的双层模糊优化控制策略。利用小波包分解方法将风电场输出功率进行分解,根据混合储能系统特性进行功率分配;采用模糊控制对储能系统的充放电功率和荷电状态进行协调控制,在此基础上以混合储能系统的平均荷电状态及其参考值为输入,采用第二次模糊控制优先对混合储能系统中的超级电容器进行再次充放电功率优化控制,同时实现风电场有功功率的平滑输出;以实际风电场数据为基础,在Matlab/Simulink中搭建数学模型,经过仿真分析证明该控制策略的有效性。  相似文献   

2.
采用自适应小波包分解的混合储能平抑风电波动控制策略   总被引:5,自引:0,他引:5  
采用蓄电池和超级电容构建混合储能系统以平抑风电场输出功率波动,实现风电平滑并网。首先,针对不同风电出力场景下风电功率的波动特性,结合风电并网波动标准和混合储能系统性能特点,实现风电功率的自适应小波包分解和储能初级功率分配,得到风电并网功率和混合储能初级功率指令;其次,在混合储能系统内部,根据超级电容的荷电状态,利用模糊优化控制对蓄电池和超级电容的功率指令进行二次修正,得到优化后的混合储能功率分配指令。算例分析表明,所提策略能够自适应地实现风电功率的最优分解和合理分配,确保混合储能荷电状态工作在合理区间,有效改善风电输出功率波动平抑效果,保证混合储能系统长期稳定运行。  相似文献   

3.
基于混合储能系统的平抑风电波动功率方法的研究   总被引:11,自引:0,他引:11  
为提高风电功率的可控性,依据国家电网公司关于风电场并网的技术规定,提出了一种基于新型混合储能系统平抑风电波动功率的方法.在对风电波动功率进行分解,并研究其平抑过程对储能系统性能需求的基础上,研制了一种新型混合储能系统.通过对运行控制方式的设计,使得该储能系统能够与风电系统进行精确、高效的功率交换;同时,储能元件可根据各自的储能特性平抑不同类型的波动功率.仿真分析表明,该平抑方法使得储能元件的储能优势得到了充分发挥,能够延长系统的使用寿命,平抑后的风电输出功率可以满足电力系统实时调度的要求.  相似文献   

4.
为提高风电功率的可控性,依据国家电网公司关于风电场并网的技术规定,提出了一种基于新型混合储能系统平抑风电波动功率的方法.在对风电波动功率进行分解,并研究其平抑过程对储能系统性能需求的基础上,研制了一种新型混合储能系统.通过对运行控制方式的设计,使得该储能系统能够与风电系统进行精确、高效的功率交换;同时,储能元件可根据各...  相似文献   

5.
《电工技术》2022,(18):44-50
混合储能系统可以利用不同储能类型互补特性,以较低成本有效平抑风电功率波动,为此提出了一种针对混合储能系统容量配置和控制策略的联合优化方法.首先,基于小波包分解将不平衡功率按频段分配给不同类型储能 设备.然后,建立考虑充放电深度对储能寿命影响的成本年值模型,以最小化成本为目标确定最优分频点,进而确定储能配置.最后,采用双层模糊控制策略,通过交叉补偿在防止荷电越限前提下有效平抑风电波动.通过对某风场全年运行数据进行仿真,验证了所述方法的有效性.  相似文献   

6.
基于模糊控制的混合储能平抑风电功率波动   总被引:1,自引:1,他引:1       下载免费PDF全文
风电功率波动对电网造成不容忽视的影响。风电并网处加入混合储能系统可以有效地降低风电对电网的影响。首先按照风电并网波动量要求,估算出某时刻的预估风电波动量。然后根据风电预估波动功率以及电池当前的能量状态建立模糊控制器,输出平抑系数K1,并计算出混合储能系统的实际输出功率以及风储并网功率。最后利用需混合储能SOE变化量以及超级电容器当前能量状态,建立模糊控制器,输出分配系数K2,计算当前超级电容器和电池的实际输出功率,并实时更新混合储能的能量状态。通过算例证明,在混合储能容量充足和不足的情况下协调控制算法均可靠、有效,并且能够充分解决混合储能使用寿命和风电功率波动平抑度之间的矛盾。  相似文献   

7.
风电系统输出功率具有波动性和随机性,并网时将严重影响电能质量。提出了一种基于超级电容器和蓄电池的新型混合储能系统,以满足平抑风电波动功率的需求。通过对混合储能系统充放电过程的控制,延长系统的使用寿命,提高充放电效率。对风电波动功率进行分解,通过采用一种新型的控制模型,建立功率信息库,根据实时风电功率及储能元件的状态,检索信息库,得到充放电控制器相应的控制算法,简化了风力发电系统多种波动功率的控制方案,缩短控制时间。仿真结果表明,所提出的混合储能系统及其控制方案是可行的,平抑后的风电输出功率可以满足电力系统实时调度的要求。  相似文献   

8.
采用小波包分频技术对风电功率进行分解,考虑储能选型策略与混合储能容量配置之间的相互影响,提出一种用于风电平抑的双循环储能容量配置方法。该方法内循环以混合储能组合方案为优化变量,外循环以储能内部功率划分的分界点为优化变量。以储能成本为目标函数,评估各分界点下不同储能方案的经济性,同时进行混合储能的选型和容量的配置。最后将与提出的风电平抑方法与其他方法进行对比,利用Matlab仿真软件验证了该方法的有效性和优越性。  相似文献   

9.
针对能量型储能系统和功率型储能系统互补控制技术,本文研究了应用于微电网中混合储能系统的有功功率分级分配方法与平抑风电功率波动的混合储能协调优化控制方法,利用蓄电池平抑风光输出功率的低频波动分量,利用超级电容平抑风光输出功率的高频波动分量,混合储能系统大大提高了风光并网后的稳定性与可控性。结合微电网架构模型以及风光等发电单元的数据,控制策略应用于浙江某海岛微电网示范工程改善了电能质量,增加了微网经济效益。  相似文献   

10.
采用能量型储能和功率型储能组成的混合储能系统平抑光伏输出功率波动。利用小波包分解可获取更多信号细节信息的优点,综合分析光伏功率信号的幅频特性、储能的性能特点,将光伏功率信号分解,得到光伏平抑目标功率和不同类型储能的充放电功率。充分考虑实际工程应用中实时控制对运算速度的要求,并通过阈值判断补偿滤波延迟效应。采用模糊控制方法对功率型储能的荷电状态(state of charge,SOC)进行自适应控制,实现功率的优化分配,提高平抑效果。算例结果表明,所提控制策略能够充分利用不同类型储能的性能优势有效平抑光伏输出功率波动。  相似文献   

11.
随着风力发电的发展,风电波动带给电网的影响越来越明显,平滑风电出力显得很重要。针对风电功率波动特性,提出基于小波包分解法,得到风电并网功率、混合储能系统参考功率和充放电状态。结合蓄电池和超级电容的荷电状态,提出了能量管理协调控制策略,实现了储能系统内部功率修正,算例结果表明:能量管理协调控制策略能完成混合储能系统内部功率最佳修正,且可以有效的平滑风电出力。最后以实际风电数据为依据,在MATLAB中建立了数学仿真模型,证明了该控制策略的有效性。  相似文献   

12.
针对风能的随机性和波动性,风力发电系统易出现功率波动的问题,采用超导磁储能(SMES)和蓄电池(BESS)混合储能的方式来平抑功率波动,提出了一种改进型混合遗传算法的变参数荷电状态(SOC)分区控制优化策略。基于自适应学习的思想对算法进行了改进,使得算法的收敛速度和精确度得以提高。将储能系统荷电状态剩余量和荷电状态分区限值作为改进后混合遗传算法的目标函数和边界条件。所得目标结果作为滤波器滤波时间常数修正值对其进行修正,从而实现功率二次分配。在Matlab/Simulink中搭建仿真模型验证了该控制策略的有效性。所提控制策略可以对任意时刻SMES和BESS出力进行最优配合,同时能减小电池充放电深度和提高对风电功率波动的平抑效果,且能有效提高混合储能系统的使用寿命。  相似文献   

13.
为了减少风力发电的波动性和随机性对电网造成的冲击,常通过配置储能系统进行风电功率波动的平抑,对此提出了一种基于遗传算法的混合储能风电平抑功率优化策略.首先,基于小波包分解将风电信息分解为高频和低频信号,形成初始功率分配策略;其次,根据当前时刻策略的平抑结果与上一时刻的平抑结果作为评估指标,形成遗传算法的适应度函数;最后...  相似文献   

14.
基于混合储能的并网光伏电站有功分级控制策略   总被引:5,自引:0,他引:5  
针对自然条件下光伏电源有功出力的波动性,以超级电容器和磷酸铁锂电池组成的混合储能系统为基础,制定了有功分级控制策略.首先分析了光伏电站整体结构及混合储能装置的接入方式,然后考虑电网需求利用指数平滑法来实时更新光伏电站整体出力参考值,实现第1级控制.根据储能元件能量存储与功率吞吐特性,提出了以超级电容器为充放电主体的混合储能系统能量管理策略,实现第2级控制,并设计了脉宽调制的控制原理电路.编程计算结果证实了所述方法的有效性.  相似文献   

15.
基于电池储能系统的风功率波动平抑策略   总被引:4,自引:0,他引:4  
为平抑风功率中的分钟级波动,在分析波动概率特性的基础上构建了基于双电池组拓扑结构的风-储混合电站。根据电池技术特性设计了电池储能系统(battery energy storage system,BESS)的在线运行策略,即两组电池分别处于充、放电状态,根据风功率超短期预测结果,交替平抑风功率中的正、负波动分量。一旦任何一组电池到达满充或满放状态,则同时切换两组电池的工作状态。提出基于蒙特卡罗模拟的BESS运行仿真模型,在历史数据的基础上对BESS在典型时段内的运行进行了模拟。基于某风电场实测数据的仿真结果表明,基于双电池组拓扑结构的储能系统可在不显著消耗电池循环寿命的情况下有效平抑风功率中的波动分量。  相似文献   

16.
超短期风电功率预测的可靠性及精度均逐步提升,文中将其引入风电场复合储能系统(HESS)控制过程,并利用预测功率信息提出了HESS超前优化控制策略。通过相邻充放电区间时长的概率分布统计,确定预测信息的时长区间,并将其作为优化控制策略中的超前控制时间区间;通过分析影响HESS运行效率的主要约束,构建了高效的HESS充放电控制策略;以荷电状态偏移方差最小为目标函数,构建HESS各存储介质同步启动情况下的优化控制模型,并考虑充放电功率和容量限值约束,获取未来时间区间HESS介质的充放电功率控制模式;最后,给出了求解算法和实现步骤。以实际风电场运行数据进行算例分析,计算结果表明本文所提方法可有效实现HESS的高效控制,具有一定实际应用价值。  相似文献   

17.
针对小规模风力发电系统存在发电功率波动的问题,研究了基于模糊控制的飞轮储能装置抑制功率波动的方法.对于飞轮储能系统而言,在其他外部系统参数未知情况下,仅通过检测公共直流母线电压,同时利用飞轮的指令速度变化,构造公共直流母线电压外环模糊控制算法,得出飞轮储能系统的直流环节电流给定.仅通过检测飞轮储能系统的直流环节电流,来实现模糊PI参数自调整,从而进行电流环的PI控制,最终实现与飞轮同轴连接的感应电机V/f控制.实验结果表明该方法具有很好的动静态性能.  相似文献   

18.
针对风电出力的随机性、波动性对电力系统的安全稳定运行产生了极大影响,提出了基于自适应滑动平均算法与集合经验模态分解相结合的混合储能系统平滑风电出力波动方法。首先利用自适应滑动平均算法将风电输出功率分解,得到满足并网条件的并网功率和混合储能功率;其次将混合储能功率进行集合经验模态分解,得到一系列频率由高到低依次排列的本征模态分量;然后根据蓄电池与超级电容的介质频率特性,将混合储能功率分配给蓄电池与超级电容;最后针对储能元件易出现过充过放的弊端,对储能元件的荷电状态进行实时监测,利用模糊优化控制对蓄电池与超级电容的功率指令进行实时修正。仿真结果表明,所提策略不仅能自适应地实现风电功率的分解,使得并网功率满足风电输出功率最大波动值的限值要求,还可确保储能元件的荷电状态工作在正常范围内,避免过充过放的发生。  相似文献   

19.
混合储能系统平抑风力发电输出功率波动控制方法设计   总被引:9,自引:1,他引:9  
风力发电系统输出功率的随机性对大规模风电并网会产生诸多不利影响,近年来采用储能装置平抑风电输出功率的研究取得了一定进展.文中分析了单独采用蓄电池组或超级电容器对风力发电输出功率进行补偿时的不足之处,在此基础上构架了采用蓄电池组和超级电容器的混合储能系统,并进一步提出了利用其平抑风力发电输出功率的控制方法.所提出的控制方法将补偿功率分为高频和低频2个部分进行补偿,一定程度上克服了储能设备单独使用时的不足,并且在补偿过程中考虑了电网调度的需求.经仿真验证该方法能够较好地平抑风力发电系统输出功率.  相似文献   

20.
为平抑风功率的波动,提高电池储能的使用效率和使用寿命。本文根据电池的技术特性,从控制电池的角度出发,提出了基于三电池组拓扑结构的电池储能系统(battery energy storage system,BESS),并设计了控制策略控制不同电池组处于不同的工作状态,即其中两组分别处于充、放电状态,另外一组处于备用状态,三组电池交替工作平抑风功率中的正、负波动分量,依次在“充备放备充”的循环模式下工作,从而提高电池的使用效率,延长电池寿命。最后基于某风场实际数据的仿真表明,基于三电池组拓扑结构的储能系统在平抑风功率波动的基础上可提高蓄电池的使用效率几乎达100%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号