首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes the status of geothermal energy utilization—direct use—in Hungary, with emphasis on developments between 2000 and 2002. The level of utilization of geothermal energy in the world increased in this period and geothermal energy was the leading producer, with 70% of the total electricity production, of all the renewable energy sources (wind, solar, geothermal and tidal), followed by wind energy at 28%. The current cost of direct heat use from biomass is 1–5 US¢/kWh, geothermal 0.5–5 US¢/kWh and solar heating 3–20 US¢/kWh. The data relative to direct use in Hungary decreased in this period and the contribution of geothermal energy to the energy balance of Hungary, despite significant proven reserves (with reinjection) of 380 million m3/year, with a heat content of 63.5 PJ/a at ΔT=40 °C, remained very low (0.25%). Despite the fact that geothermal fluids with temperatures at the surface higher than 100 °C are available, no electricity has been generated. As of 31 December 2002, the geothermal capacity utilised in direct applications in Hungary is estimated to be 324.5 MWt and to produce 2804 TJ/year. Geothermal heat pumps represent about 4.0 MWt of this installed capacity. The quantity of thermal water produced for direct uses in 2002 was approximately 22 million m3, with an average utilization temperature of 31 °C. The main consumer of geothermal energy is agriculture (68% of the total geothermal heat dedicated to direct uses). The geothermal water is used only in five spas for space heating and sanitary hot water (SHW), although there are 260 spas in the country, and the thermal water produced has an average surface temperature of 68 °C. The total heat capacity installed in the spas is approximately 1250 MWt; this is not provided by geothermal but could be, i.e., geothermal could provide more than three times the geothermal capacity utilized in direct uses by 31 December 2002 (324.5 MWt).  相似文献   

2.
Geothermal Heat Pumps, or Ground Coupled Heat Pumps (GCHP), are systems combining a heat pump with a ground heat exchanger (closed loop systems), or fed by ground water from a well (open loop systems). They use the earth as a heat source when operating in heating mode, with a fluid (usually water or a water–antifreeze mixture) as the medium that transfers the heat from the earth to the evaporator of the heat pump, thus utilising geothermal energy. In cooling mode, they use the earth as a heat sink. With Borehole Heat Exchangers (BHE), geothermal heat pumps can offer both heating and cooling at virtually any location, with great flexibility to meet any demands. More than 20 years of R&D focusing on BHE in Europe has resulted in a well-established concept of sustainability for this technology, as well as sound design and installation criteria. Recent developments are the Thermal Response Test, which allows in-situ-determination of ground thermal properties for design purposes, and thermally enhanced grouting materials to reduce borehole thermal resistance. For cooling purposes, but also for the storage of solar or waste heat, the concept of underground thermal energy storage (UTES) could prove successful. Systems can be either open (aquifer storage) or can use BHE (borehole storage). Whereas cold storage is already established on the market, heat storage, and, in particular, high temperature heat storage (> 50 °C) is still in the demonstration phase. Despite the fact that geothermal heat pumps have been in use for over 50 years now (the first were in the USA), market penetration of this technology is still in its infancy, with fossil fuels dominating the space heating market and air-to-air heat pumps that of space cooling. In Germany, Switzerland, Austria, Sweden, Denmark, Norway, France and the USA, large numbers of geothermal heat pumps are already operational, and installation guidelines, quality control and contractor certification are now major issues of debate.  相似文献   

3.
A chemical heat pump for upgrading low-level thermal energy has been proposed by adopting a reversible organic reaction couple, endothermic liquid-phase dehydrogenation of 2–propanol at low temperature and exothermic gas-phase hydrogenation of acetone at high temperature, where thermodynamical work is done by separating condensed 2–propanol from the gaseous mixture of 2–propanol, acetone and hydrogen in a fractionation column. In the system constitution of the continuous type, the overhead vapour of the fractionation column is fed through the heat exchanger into the exothermic reactor, where acetone and hydrogen in excess are changed at 200°C into the equilibrium mixture, from which condensable 2–propanol is separated in the column by cooling at 30°C. The reverse reaction of 2–propanol decomposition into acetone and hydrogen proceeds in the endothermic reactor, i.e. the reboiler of the column, absorbing heat at 80°C. On the contrary, acetone and hydrogen in the overhead vapour of the fractionation column are stored at 30°C as liquid and metal hydride, respectively, in the system constitution of the storage type; when necessary, metal hydride is decomposed by heating at 80°C, with hydrogen at high pressure evolved and fed through the heat exchanger into the exothermic reactor, giving the equilibrium mixture at high pressure and temperature. Product condensates are transferred through a valve into the fractionation column in order to separate 2–propanol and acetone, the former of which is dehydrogenated in the endothermic liquid-phase reactor, regenerating acetone and hydrogen at 80°C and atmospheric pressure. Energy efficiencies were evaluated for the system constitutions of both the continuous and storage types; the 80°C heat supplied was convertible into the 200°C heat continuously at the enthalpy efficiency or coefficient of performance (COP) of 0·36 in the former, whereas the 270°C heat was obtainable with the aid of metal hydride from the same heat source at COP of 0·21 in the latter.  相似文献   

4.
Roger Thomas   《Geothermics》2003,32(4-6):679
Titanium resists seawater and brine at temperatures as high as 260 °C, and is also resistant to corrosion by sulphur dioxide; hydrogen sulphide; and aqueous solutions of those gases. Titanium is fully resistant to corrosion and stress corrosion cracking in the standard NACE test solution containing 3000 ppm dissolved H2S, 5% NaCl, and 0.5% acetic acid (pH 3.5). To avoid pitting at temperatures above 80 °C, titanium alloys containing nickel, molybdenum, palladium or ruthenium are used. Examples of equipment fabricated in titanium in order to withstand the corrosive fluids present in some geothermal installations are plate heat exchangers and well casing. By careful selection of the grade of titanium, material thickness (with no corrosion allowance) and fabrication method, an economic fabrication with low maintenance costs and high availability can be achieved. A prime example of the application of titanium in the geothermal industry is the use of Grade 29 well casing in the Salton Sea, USA, which enables the exploitation of a geothermal resource containing highly corrosive brine. Advances in production technology are being applied to reduce the cost of the casing pipe. This technology may enable the use of sea water injection to augment weak or depleted aquifers, or to generate steam from Hot Dry Rocks.  相似文献   

5.
傅黎 《太阳能》2000,(2):30-31
欧洲各国都在开辟通向持久能源的道路,影响他们决策的主要因素是环境保护、创造就业机会和能源供应的安全可靠。可再生能源技术在这些方面都有较大优势。它对环境的影响最小,可替代部分常规能源,增加能源供应的安全性和可靠性;它要求较大的设备投资,创造了更多的就业机会,有助于经济增长。在欧洲大部分地区,环保的考虑推动着替代能源技术的开发。太阳能被公认为是一种极好的替代能源,它的利用有助于降低二氧化碳的排放和环境保护。很多国家,如丹麦、芬兰、德国和瑞士都认为气候变暖是推动太阳能研究、开发、展示和销售活动的主要因素。在很…  相似文献   

6.
This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38°03′, long. E114°26′), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth.  相似文献   

7.
The effects upon the economics, size and performances of domestic central heating heat pumps by the incorporation of some thermal energy storage between the heat pump and the heat distribution system are studied with the aid of computer simulation programs. It is demonstrated that significant reductions in the capacity of the heat pump and system annual running costs can be made by using moderate quantities of heat storage without causing any detriment to the overall performance of the heating system. The results are being validated in the laboratory, where a phase-change material thermal energy store is linked to a heat pump and heat distribution system, and the performance of this system is being monitored.  相似文献   

8.
我国太阳能热利用产业2006年发展概况   总被引:7,自引:0,他引:7  
一前言2006年是中华人民共和国《可再生能源法》颁布实施的第一年,也是国家"十一五"规划执行的第一年,在法规和《2010~2020可再生能源中长期发展规划》指导和推动下,中国太阳能热利用产业  相似文献   

9.
The photovoltaic (PV) power systems in Japan made great strides in the past decade. The PV industry in the 1990s greatly depended on the research projects and dissemination programs carried out by the Ministry of International Trade and Industry. However, the industrial structure for full-scale deployment of the PV system is currently being established by the manufacturers’ continuous efforts to reduce the PV system cost and the government’s consecutive supports to create the initial market. It is expected that the synergetic effect of the cost reduction and incentives for introduction will activate the PV industry and its market more and more toward achieving 5000 MW of the capacity in FY 2010.  相似文献   

10.
The experimental and predicted performance of a prototype heat pump assisted continuous dryer is reported. The dryer was shown to be capable of specific moisture extraction rates (SMERs) of between 1.5 and 2.5 kg/kWh using wetted foam rubber as the test material being dried. The results highlight the importance of maintaining conditions of high relative humidity within the air stream entering the evaporator; an increase in the relative humidity from 30 to 80% was shown to give a two-fold increase in the SMER. An optimum evaporator bypass air ratio of between 60 and 70% was observed for this dryer. The effects on performance of deviations from this optimum condition were found to be less significant than had been indicated by earlier models. The predicted performance of the dryer using a simulation model developed previously by the authors was in good agreement with the corresponding measured values.  相似文献   

11.
China is troubled by a shortage of energy sources. This shortage is even more serious in rural areas. However, about 3000 active hydrothermal systems are spread over China's territory and are presumed to be related either to intraplate or to plate marginal thermal anomalies. Their energy content could, in some cases, make a valid contribution to the local energy demand. Electricity is at present generated in Yangbajain geothermal field (10 MW), direct uses still represent a very minor utilization. Geothermal research is under way all over the country.  相似文献   

12.
13.
In the paper, a method for the determination of the parameters of the units, stationary operating in a multi-unit heat pump system, is presented. This method is used for the consideration of six schemes of hydraulic connection of the heat exchangers in groups.  相似文献   

14.
At present, big projects for promoting the development of new energy resources are being conducted on a national scale by both the Ministry of International Trade and Industry and the Ministry of Education in Japan. This paper outlines the state of the art in hydrogen production research supported by these projects. Results of electrolysis and thermochemical methods are described and the target required to implement the hydrogen society is discussed.  相似文献   

15.
The agricultural uses of geothermal energy were the centre of attention during the initial stages of geothermal direct applications in Europe, e.g. in Hungary, Macedonia, Bulgaria, Serbia. The focus now seems to be on district heating systems, integrated systems, large balneological/tourist centres, etc. This paper analyses the problems involved in the development of agricultural uses in different regions of Europe and how this sector can be promoted. An analysis of the situation in Europe and in Hungary, Macedonia and Greece, in particular, has revealed different requirements and potentials, different combinations of influencing factors, and the need for different development strategies. It is, however, clear from this analysis that the agricultural uses of geothermal energy are not in collision with modern trends in direct geothermal developments in Europe. On the contrary, they can improve the economic aspects of any district heating or integrated system by offering excellent possibilities for cascade use of the geothermal water and combinations of users with different day/night and seasonal heat requirements.  相似文献   

16.
Crystalline silicon solar cells show promise for further improvement of cell efficiency and cost reduction by developing process technologies for large-area, thin and high-efficiency cells and manufacturing technologies for cells and modules with high yield and high productivity.In this paper, Japanese activities on crystalline Si wafers and solar cells are presented. Based on our research results from crystalline Si materials and solar cells, key issues for further development of crystalline Si materials and solar cells will be discussed together with recent progress in the field. According to the Japanese PV2030 road map, by the year 2030 we will have to realize efficiencies of 22% for module and 25% for cell technologies into industrial mass production, to reduce the wafer thickness to 50–100 μm, and to reduce electricity cost from 50 Japanese Yen/kWh to 7 Yen/kWh in order to increase the market size by another 100–1000 times.  相似文献   

17.
国内污泥处理与综合利用现状及发展   总被引:7,自引:0,他引:7  
概述了目前全国范围内污泥处理与综合利用的现状,根据污泥的特性,从几种不同的处理方法讨论了污泥处理的特点和存在的问题,并根据国家及国际环保要求及发展趋势得出污泥处理和利用的最新方式--污泥焚烧发电方法,论述了目前污泥焚烧的状况及存在和需要改进的问题.最后得出按照污泥减量化、稳定化、无害化和资源化的要求,污泥焚烧发电是污泥处理的有效利用方式和发展方向.  相似文献   

18.
There is an increasing global demand for a faster, more expansive development in the energy sector, in order to improve the standard of living of the world's population by the creation of more jobs and better living conditions. The public is, however, well aware of the damage that has been done to the environment, in the form of deforestation, despoiling of lakes and rivers and, in particular, greenhouse effects, and it is unwilling to further sacrifice its natural environment. This decision puts pressure on scientists, engineers and developers to find ways and means of attaining “sustainable energy development”. In other words, the challenge now is to achieve the sustainable development of alternative renewable energy resources. Sustainability may be achieved in a number of ways, but the one most likely to result in a rapid increase in energy output without a deleterious impact on the environment is the revamping and integration of what we already have. This paper attempts to address sustainability as it applies to geothermal energy. We describe the concept of a multiple integrated use of geothermal energy, including the tenable benefits that can be obtained from applying this concept, such as a longer reservoir lifespan, a lower specific environmental impact, and greater marketing flexibility and profitability. The paper also emphasises the importance of achieving a maximum effective temperature drop across the application, commensurate with a minimum flow rate, optimal pumping characteristics and minimal fluid extraction from the geothermal reservoir. In geothermal house heating systems this means using large and effective radiators, dual-pipe heating systems, and thermostatic controls on each radiator. Where modifications to existing house heating systems are not feasible, e.g. by conversion from a single-pipe to a dual-pipe system or installation of larger radiators, an alternative solution is to adopt a cascaded flow of the geothermal fluid through a combination of heating systems operating at different temperature levels. For economic reasons it is always better to use the geothermal water directly if its chemical quality permits us to do so, otherwise heat exchangers made of resistant materials will be needed to isolate the geothermal fluid from the heating fluid in order to avoid corrosion or scaling in the pipes and radiators. The heat exchangers should be designed in such a way as to obtain a maximum temperature drop of the geothermal fluid. The paper also describes some heating system configurations, the characteristics of geothermal heating systems and their automatic control systems, as well as recommended geothermal field management and monitoring systems. The paper also includes a few examples of existing projects to demonstrate what has already been achieved and what could be done in the future; some suggestions are also made for new developments and innovations to make geothermal energy more generally attractive and useful worldwide.  相似文献   

19.
A heat pump assisted distillation system has been designed for the separation of ethanol from 7 per cent aqueous mixtures to produce 93 per cent ethanol by weight. The distillation column has been designed on the basis of conventional design procedures. Valve trays were chosen to provide operational flexibility. R114 was chosen as the working fluid for the mechanical vapour compression heat pump. The heat pump system has been designed to match the heat loads determined for the column. Auxiliary heat exchangers have been provided to aid flexibility and control of column operation.  相似文献   

20.
Most in-ground heat storage installations use a system of horizontal or vertical plastic pipes to carry heat exchanger fluid. In designing these systems it is generally assumed that the thermal effects of the plastic pipe can be neglected. This paper reports a laboratory study of the pattern of heat flow around fluid-carrying plastic pipe buried in clay soil. Heat flow measurements as well as estimated contact resistances are presented for a number of configurations. In addition, numerical model computations are given for steady-state, transient and cyclic behaviour of several configurations, and it is shown that substantially reduced heat flows are obtained when plastic pipe is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号