首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
In this paper, an analytical model for perforation of composite sandwich panels with honeycomb core subjected to high-velocity impact has been developed. The sandwich panel consists of a aluminium honeycomb core sandwiched between two thin composite skins. The solution involves a three-stage, perforation process including perforation of the front composite skin, honeycomb core, and bottom composite skin. The strain and kinetic energy of the front and back-up composite skins and the absorbed energy of honeycomb core has been estimated. In addition, based on the energy balance and equation of motion the absorbed energy of sandwich panel, residual velocity of projectile, perforation time and projectile velocity have been obtained and compared with the available experimental tests and numerical model. Furthermore, effects of composite skins and aluminium honeycomb core on perforation resistance and ballistic performance of sandwich panels has been investigated.  相似文献   

2.
In the aircraft industry, manufacturers have to decide quickly whether an impacted sandwich needs repairing or not. Certain computation tools exist at present but they are very time-consuming and they also fail to perfectly model the physical phenomena involved in an impact. In a previous publication, the authors demonstrated the possibility of representing the Nomex™ honeycomb core by a grid of nonlinear springs and have pointed out both the structural behaviour of the honeycomb and the influence of core-skin boundary conditions. This discrete approach accurately predicts the static indentation on honeycomb core alone and the indentation on sandwich structure with metal skins supported on rigid flat support. In this study, the domain of validity of this approach is investigated. It is found that the approach is not valid for sharp projectiles on thin skins. In any case, the spring elements used to model the honeycomb cannot take into account the transverse shear that occurs in the core during the bending of a sandwich. To overcome this strong limitation, a multi-level approach is proposed in the present article. In this approach, the sandwich structure is modelled by Mindlin plate elements and the computed static contact law is implemented in a nonlinear spring located between the impactor and the structure. Thus, it is possible to predict the dynamic structural response in the case of low-velocity/low-energy impact on metal-skinned sandwich structures. A good correlation with dynamic experimental tests is achieved.  相似文献   

3.
《Composites Science and Technology》2006,66(11-12):1682-1693
The high velocity impact response of a range of polypropylene-based fibre–metal laminate (FML) structures has been investigated. Initial tests were conducted on simple FML sandwich structures based on 2024-O and 2024-T3 aluminium alloy skins and a polypropylene fibre reinforced polypropylene (PP/PP) composite core. Here, it was shown that laminates based on the stronger 2024-T3 alloy offered a superior perforation resistance to those based on the 2024-O system. Tests were also conducted on multi-layered materials in which the composite plies were dispersed between more than two aluminium sheets. For a given target thickness, the multi-layered laminates offered a superior perforation resistance to the sandwich laminates. The perforation resistances of the various laminates investigated here were compared by determining the specific perforation energy (s.p.e.) of each system. Here, the sandwich FMLs based on the low density PP/PP core out-performed the multi-layer systems, offering s.p.e.’s roughly double that exhibited by a similar Kevlar-based laminate.A closer examination of the panels highlighted a number of failure mechanisms such as ductile tearing, delamination and fibre failure in the composite plies as well as permanent plastic deformation, thinning and shear fracture in the metal layers. Finally, the perforation threshold of all of the FML structures was predicted using the Reid–Wen perforation model. Here, it was found that the predictions offered by this simple model were in good agreement with the experimental data.  相似文献   

4.
In this study the perforation of composite sandwich structures subjected to high-velocity impact was analysed. Sandwich panels with carbon/epoxy skins and an aluminium honeycomb core were modelled by a three-dimensional finite element model implemented in ABAQUS/Explicit. The model was validated with experimental tests by comparing numerical and experimental residual velocity, ballistic limit, and contact time. By this model the influence of the components on the behaviour of the sandwich panel under impact load was evaluated; also, the contribution of the failure mechanisms to the energy-absorption of the projectile kinetic energy was determined.  相似文献   

5.
Sandwich panels are used in industrial fields where lightness and energy absorption capabilities are required. In order to increase their exploitation, a wide knowledge of their mechanical behavior also in severe loading conditions is crucial. Light structures such as the one studied in the present work, sandwich panels with aluminum skins and Nomex honeycomb core, are exposed to a possible decrease of their structural integrity, resulting from a low velocity impact. In order to quantitatively describe the decrease of the sandwich mechanical performance after an impact, an experimental program of compression after impact tests (CAI) has been performed. Sandwich panel specimens have been damaged during a low velocity impact test phase, using an experimental apparatus based on a free fall mass tower. Different experimental impact energies have been tested. Damaged and undamaged specimens have been consequently tested adopting a compression after impact procedure. The relation between the residual strength of the panel and the possible relevant parameters has been statistically investigated. The results show a clear reduction of the residual strength of the damaged panels compared with undamaged ones. Nevertheless, a reduced dependency between the impact energy and the residual strength is found above a certain impact energy threshold.  相似文献   

6.
Carbon-epoxy prepregs are generally used to form the skins of honeycomb sandwich structures used in aerospace or racing yachts. For some applications, it is desirable to increase the thickness of the skins. In order to achieve an ideal core pressure level during cure for maximal skin-core bonding, the issue of air extraction from the honeycomb cells through the skin during processing thus becomes critical, in particular if vacuum only processing is used. In the present work, partially impregnated prepregs, called semipregs, having high initial transverse permeability to air, are combined with traditional prepregs to form a hybrid skin. Results are presented on the pressure change inside the honeycomb cells and the skin permeability to air during cure, as well as on skin-core adhesion. The final sandwich quality is assessed and found to be comparable to that obtained with prepreg skins.  相似文献   

7.
In order to understand the influence of the thicknesses of Kraft paper honeycomb core and medium density fiberboard skins on the stiffness of the sandwich panel, the corresponding finite element models for the resulting sandwich panels were developed. The material properties for the core and skin components of these finite element models were determined using the published data and specifications. It was found that a decrease in the thickness ratio of the core to skin layer (shelling ratio) resulted in an increase in the modulus of elasticity and shear modulus of the sandwich panels. The increase was significant when the shelling ratio was smaller than six. Cell size only affected the modulus of elasticity of the sandwich panels under the flat-wise compression and panel’s inter-laminar shear modulus. Regression equations relating the stiffness of the sandwich panels to the shelling ratio and core cell size were obtained using the finite element model simulated results and were found to compare well with the existing models for layered wood composites.  相似文献   

8.
Non-autoclave processing of honeycomb sandwich structures generally leads to poor compaction and high porosity of the skins, along with a decreased skin–core adhesion. The pressure level inside the honeycomb cells plays an important role and is controlled by the permeability to air of the skins. In this work, an initial range of skin permeability to air was explored by perforating the prepregs and adhesive layer selectively. The role of the resulting pressure inside the honeycomb on skin–core adhesion and skin quality was evaluated. Prepreg air permeability was found to control skin–core adhesion through the pressure in the honeycomb and potential outgassing of the adhesive layer. An optimal range of initial pressure inside the honeycomb was found to be 40–70 kPa. A universal process window was proposed to determine the time frame of vacuum application leading to an optimal initial honeycomb pressure level.  相似文献   

9.
Mechanical response and energy absorption of aluminium foam sandwich panels subjected to quasi-static indentation loads were investigated experimentally. These sandwich panels consisted of two aluminium face-sheets and a closed cell aluminium foam core (ALPORAS®). Quasi-static indentation tests were conducted using an MTS universal testing machine, with sandwich panels either simply supported or fully fixed. Force–displacement curves were recorded and the total energy absorbed by sandwich panels was calculated accordingly. Videos and photographs were taken to capture the deformation of top face-sheets, foam cores and bottom face-sheets. Effects of face-sheet thickness, core thickness, boundary conditions, adhesive and surface condition of face-sheets on the mechanical response and energy absorption of sandwich panels were discussed.  相似文献   

10.
《Composites Part A》2001,32(9):1189-1196
This paper outlines a finite element procedure for predicting the behaviour under low velocity impact of sandwich panels consisting of brittle composite skins supported by a ductile core. The modelling of the impact requires a dynamic analysis that can also handle non-linearities caused by large deflections, plastic deformation of the core and in-plane degradation of the composite skins. Metal honeycomb, frequently used as a core material, is anisotropic and requires a non-standard approach in the elasto-plastic part of the analysis. A suitable yield criteria based on experimental observations is proposed. Comparisons of experimental and finite element responses are shown for sandwich panels with carbon fibre skins and aluminium honeycomb cores.  相似文献   

11.
A finite element model is proposed to determine the residual print of sandwich structures with Nomex honeycomb core and metallic skins indented by a spherical indenter and to simulate its behavior when this indented structure is subjected to lateral compressive loading (known as CAI/ Compression after impact). The particularities of this model rely on representing the honeycomb with a grid of non-linear springs which its behavior law calibrated from uniform compression test. This simple model, after integrating the cycle behavior law of honeycomb, allows predicting the geometry of residual print with a good precision. This model is then developed to propose a complete computation from indentation, residual print geometry to lateral compressive loading after indentation (CAI). This model also allows predicting numerically the residual strength of structure in CAI and the elliptical evolution of residual print geometry during CAI loading. A good correlation with test results is obtained except for the very small residual print depth.  相似文献   

12.
A test technique for measuring skin-core adhesion in fibre reinforced sandwich structures has been developed and applied. The test enables the interfacial fracture energy to be measured for most standard sandwich constructions. The technique has been subsequently employed to investigate skin-core adhesion in a number of sandwich structures similar to those currently used in the marine industry. It has been shown that the interfacial fracture toughness of a GFRP-crosslinked PVC sandwich structure can be as high as 2700 J/m2; however, sandwich constructions based on balsa cores offered considerably lower values of interfacial fracture energy. Here it was found that pre-treating the balsa core prior to bonding of the composite skins has a deleterious effect on the measured fracture toughness. Finally, the results of these tests have been correlated with data obtained from conventional climbing drum and short beam shear tests.  相似文献   

13.
When localized transverse loading is applied to a sandwich structure, the facesheet locally deflects and the core crushes. A residual dent induced by the core crushing significantly degrades the mechanical properties of the sandwich structure. In a previous paper, the authors established a “segment-wise model” for theoretical simulation of barely visible indentation damage in honeycomb sandwich beams with composite facesheets. Honeycomb sandwich beam was divided into many segments based on the periodic shape of the honeycomb and complicated through-thickness characteristics of the core were integrated into each segment. In this paper, the new model is validated by experiments using specimens with different types of honeycomb cores. In addition, the damage growth mechanism under indentation load was clarified from the viewpoint of the reaction force from the core to the facesheet. The applicability of the model to other types of core materials is also discussed.  相似文献   

14.
15.
Honeycomb sandwich structures, composed of many regularly arranged hexagonal cores and two skins, often show excellent impact performance due to strong energy absorption ability under impact loads. This paper studies dynamic mechanical responses of aluminum honeycomb sandwich structures. Parametric geometry modeling using UG software and finite element analysis using ANSYS explicit dynamics module are performed. Finite difference algorithm based on time-stepping integration is used to get the impact displacement, and stress and strain with time. Effects of different impact velocities, core length and wall thickness on the distributions of plastic stress and strain are also explored. Results show that thinner honeycomb side length and thicker wall thickness lead to stronger impact resistance. This research provides theoretical support for promoting optimal design of lightweight structures against impact loads.  相似文献   

16.
The response and energy absorption capacity of cellular sandwich panels that comprises of silk-cotton wood skins and aluminum honeycomb core are studied under quasi-static and low velocity impact loading. Two types of sandwich panels were constructed. The Type-I sandwich panel contains the silk-cotton wood plates (face plates) with their grains oriented to the direction of loading axis and in the case of Type-II sandwich panel, the wood grains were oriented transverse to the loading axis. In both of the above cases, aluminum honeycomb core had its cell axis parallel to the loading direction. The macro-deformation behavior of these panels is studied under quasi-static loading and their energy absorption capacity quantified. A series of low velocity impact tests were conducted and the dynamic data are discussed. The results are then compared with those of quasi-static experiments. It is observed that the energy absorption capacity of cellular sandwich panels increases under dynamic loading when compared with the quasi-static loading conditions. The Type-I sandwich panels tested in this study are found to be the better impact energy absorbers for low velocity impact applications.  相似文献   

17.
Polymeric foams are extensively used as the core materials in sandwich structures and the core material is typically bonded between relatively thin fibre-composite skins. Such sandwich structures are widely used in the aerospace, marine and wind-energy industries. In the present work, various sandwich structures have been manufactured using glass-fibre-reinforced polymer (GFRP) skins with three layers of poly(vinyl chloride) foam to form the core, with the densities of the foam layers ranging from 60 to 100 kg/m3. This study has investigated the effects on the quasi-static flexural and high-velocity impact properties of the sandwich structures of: (a) the density of the polymeric-foam core used and (b) grading the density of the foam core through its thickness. The digital image correlation technique has been employed to quantitatively measure the values of the deformation, strain and onset of damage. Under quasi-static three-point and four-point bend flexural loading, the use of a low-density layer in a graded-density configuration reduced the likelihood of failure of the sandwich structure by a sudden force drop, when compared with the core configuration using a uniform (i.e. homogenous) density layer. The high-velocity impact tests were performed on the sandwich structures using a gas-gun facility with a compliant, high-density polyethylene projectile. From these impact experiments, the graded-density foam core with the relatively low-density layer located immediately behind the front (i.e. impacted) GFRP skin was found to absorb more impact energy and possess an increased penetration resistance than a homogeneous core structure.  相似文献   

18.
Experimental Analysis and Modeling of the Crushing of Honeycomb Cores   总被引:5,自引:0,他引:5  
In the aeronautical field, sandwich structures are widely used for secondary structures like flaps or landing gear doors. The modeling of low velocity/low energy impact, which can lead to a decrease of the structure strength by 50%, remains a designers main problem. Since this type of impact has the same effect as quasi-static indentation, the study focuses on the behavior of honeycomb cores under compression. The crushing phenomenon has been well identified for years but its mechanism is not described explicitly and the model proposed may not satisfy industrial purposes. To understand the crushing mechanism, honeycomb test specimens made of Nomex, aluminum alloy and paper were tested. During the crushing, a CCD camera showed that the cell walls buckled very quickly. The peak load recorded during tests corresponded to the buckling of the common edge of three honeycomb cells. Further tests on corner structures to simulate only one vertical edge of a honeycomb cell show a similar behavior. The different specimens exhibited similar load/displacement curves and the differences observed were only due to the behavior of the different materials. As a conclusion of this phenomenological study, the hypothesis that loads are mainly taken by the vertical edge can be made. So, a honeycomb core subjected to compression can be modeled by a grid of nonlinear springs. A simple analytical model was then developed and validated by tests on Nomex honeycomb core indented by different sized spherical indenters. A good correlation between theory and experiment was found. This result can be used to satisfactorily model using finite elements the indentation on a sandwich structure with a metallic or composite skin and honeycomb core.  相似文献   

19.
复合材料夹芯板低速冲击后弯曲及横向静压特性   总被引:7,自引:1,他引:6       下载免费PDF全文
对低速冲击后的复合材料Nomex 蜂窝夹芯板进行了纯弯曲和准静态横向压缩实验, 用X 光技术、热揭层技术和外观检测等对板内的损伤进行测量, 分析了被冲击面在受压情况下蜂窝夹芯板的弯曲破坏特点, 对比了横向静压与低速冲击所造成的板内损伤, 讨论了不同横向压缩速度时接触力P-压入位移$h 的变化规律和损伤情况。结果表明: 低速冲击可使蜂窝夹芯板的弯曲强度大幅度降低; Nomex 蜂窝夹芯板对低速冲击不敏感。   相似文献   

20.
The Directionally Reinforced Integrated Single-yarn (DIRIS) architecture is a novel, patented concept of creating directionally reinforced high-strength cores for sandwich panels developed at the Institute of Mechanics of Materials and Geostructures S.A. This technology using glass or carbon fibre-reinforced PEEK has been so far implemented on high-strength honeycomb cores of triangular isogrid geometry with impressive results in all constitutive parameters both in-plane and out-of-plane. In this paper the application of the DIRIS technology on creating high-strength auxetic triangular cores is presented. The mechanical behaviour of the resulting core and panel was numerically investigated using FEA and testing on manufactured prototypes confirmed the high strength of the proposed design. In fact the shear modulus of the DIRIS auxetic cores was found superior to that of existing mass-produced honeycomb cores despite the inherent complexity of the geometrical configuration and the non-standardized manufacturing method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号