首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An algorithm that permits the retrieval of profiles of particle mass and surface-area concentrations in the stratospheric aerosol layer from independently measured aerosol (particle and Rayleigh) and molecule (Raman or Rayleigh) backscatter signals is developed. The determination is based on simultaneously obtained particle extinction and backscatter profiles and on relations between optical and microphysical properties found from Mie-scattering calculations for realistic stratospheric particle size distributions. The size distributions were measured with particle counters released on balloons from Laramie, Wyoming, between June 1991 and April 1994. Mass and surface-area concentrations can be retrieved with relative errors of 10-20% and 20-40%, respectively, with a laser wavelength of 355 nm and with errors of 20-30% and 30-60%, respectively, with a laser wavelength of 308 nm. Lidar measurements taken within the first three years after the eruption of Mt. Pinatubo in June 1991 are shown. Surface-area concentrations around 20 μm(2) cm(-3) and mass concentrations of 3 to 6 μg m(-3) were found until spring 1993.  相似文献   

2.
Hasekamp OP  Landgraf J 《Applied optics》2007,46(16):3332-3344
We investigate the capabilities of different instrument concepts for the retrieval of aerosol properties over land. It was found that, if the surface reflection properties are unknown, only multiple-viewing-angle measurements of both intensity and polarization are able to provide the relevant aerosol parameters with sufficient accuracy for climate research. Furthermore, retrieval errors are only little affected when the number of viewing angles is increased at the cost of the number of spectral sampling points and vice versa. This indicates that there is a certain amount of freedom for the instrument design of dedicated aerosol instruments. The final choice on the trade-off between the spectral sampling and the number of viewing angles should be made taking other factors into account, such as instrument complexity and the ability to obtain global coverage.  相似文献   

3.
Zhang T  Gordon HR 《Applied optics》1997,36(12):2650-2662
We report a sensitivity analysis for the algorithm presented by Gordon and Zhang [Appl. Opt. 34, 5552 (1995)] for inverting the radiance exiting the top and bottom of the atmosphere to yield the aerosol-scattering phase function [P(?)] and single-scattering albedo (omega(0)). The study of the algorithm's sensitivity to radiometric calibration errors, mean-zero instrument noise, sea-surface roughness, the curvature of the Earth's atmosphere, the polarization of the light field, and incorrect assumptions regarding the vertical structure of the atmosphere, indicates that the retrieved omega(0) has excellent stability even for very large values (~2) of the aerosol optical thickness; however, the error in the retrieved P(?) strongly depends on the measurement error and on the assumptions made in the retrieval algorithm. The retrieved phase functions in the blue are usually poor compared with those in the near infrared.  相似文献   

4.
Vermeulen A  Devaux C  Herman M 《Applied optics》2000,39(33):6207-6220
A method has been developed for retrieving the scattering and microphysical properties of atmospheric aerosol from measurements of solar transmission, aureole, and angular distribution of the scattered and polarized sky light in the solar principal plane. Numerical simulations of measurements have been used to investigate the feasibility of the method and to test the algorithm's performance. It is shown that the absorption and scattering properties of an aerosol, i.e., the single-scattering albedo, the phase function, and the polarization for single scattering of incident unpolarized light, can be obtained by use of radiative transfer calculations to correct the values of scattered radiance and polarized radiance for multiple scattering, Rayleigh scattering, and the influence of ground. The method requires only measurement of the aerosol's optical thickness and an estimate of the ground's reflectance and does not need any specific assumption about properties of the aerosol. The accuracy of the retrieved phase function and polarization of the aerosols is examined at near-infrared wavelengths (e.g., 0.870 mum). The aerosol's microphysical properties (size distribution and complex refractive index) are derived in a second step. The real part of the refractive index is a strong function of the polarization, whereas the imaginary part is strongly dependent on the sky's radiance and the retrieved single-scattering albedo. It is demonstrated that inclusion of polarization data yields the real part of the refractive index.  相似文献   

5.
Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness. The polarization of the O(2)A band can be larger than the polarization of the continuum, which typically occurs for strongly polarizing aerosols in an elevated layer, or smaller, which typically occurs for depolarizing aerosols or cirrus clouds in an elevated layer. We show that in the case of a single aerosol layer in the atmosphere a determination of the aerosol layer altitude may be obtained. Furthermore, we show limitations of the aerosol layer altitude determination in case of multiple aerosol layers. To perform these simulations we developed a fast method for multiple scattering radiative transfer calculations in gaseous absorption bands including polarization. The method is a combination of doubling-adding and k-binning methods. We present an error estimation of this method by comparing with accurate line-by-line radiative transfer simulations. For the Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness. The polarization of the O(2)A band can be larger than the polarization of the continuum, which typically occurs for strongly polarizing aerosols in an elevated layer, or smaller, which typically occurs for depolarizing aerosols or cirrus clouds in an elevated layer. We show that in the case of a single aerosol layer in the atmosphere a determination of the aerosol layer altitude may be obtained. Furthermore, we show limitations of the aerosol layer altitude determination in case of multiple aerosol layers. To perform these simulations we developed a fast method for multiple scattering radiative transfer calculations in gaseous absorption bands including polarization. The method is a combination of doubling-adding and k-binning methods. We present an error estimation of this method by comparing with accurate line-by-line radiative transfer simulations. For the O(2)A band, the errors in the degree of linear polarization are less than 0.11% for transmitted light, and less than 0.31% for reflected light. band, the errors in the degree of linear polarization are less than 0.11% for transmitted light, and less than 0.31% for reflected light.  相似文献   

6.
Dubinsky RH  Carswell AI  Pal SR 《Applied optics》1985,24(11):1614-1622
The extinction and backscattering of 514-nm laser radiation in polydisperse water droplet clouds have been studied in the laboratory. Three cloud size distributions with modal diameters of 0.02, 5, and 12 microm have been investigated. The relationships between the cloud optical parameters (attenuation coefficient sigma and volume backscattering coefficient beta(pi)) and the cloud water content C have been measured for each size distribution. It has been found that a linear relationship exists between sigma and C and between beta(pi) and C for cloud water content values up to 3 g/m3. The linear relationships obtained, however, have slopes which depend on the droplet size distribution. For a given water content both sigma and beta(pi) increase as the modal diameter decreases. The measured data are compared with existing theoretical analyses and discussed in terms of their application to lidar measurements of atmospheric clouds. It is concluded that the empirical information obtained can serve as a basis for quantitative lidar measurements.  相似文献   

7.
Xu L  Zhang J 《Applied optics》1995,34(15):2724-2736
Improved ray-optics theory and Mie theory for single scattering and an adding-doubling method for multiple scattering have been used to study the interaction of radiation in NASA's Visible and Infrared Spin-Scan Radiometer Atmospheric Sounder Satellite (VAS) IR channels and the microphysics of inhomogeneous cirrus clouds. The simulation study shows that crystal shape has remarkable effects on scattering and on the radiative-transfer properties of cirrus clouds in IR spectra. The sensitivity of the brightness temperature, as observed with VAS-IR channels, to the hexagonal columns and plates in cirrus clouds is noticeable. A method that permits one to infer the optical thickness, crystal shape, ice-water content,and emittance of cirrus clouds by using a multi-IR window channel with a scanning observation technique is developed. Detailed error analyses are carried out, and the characteristics of VAS-IR window channels are investigated through the examination of the effects of sea-surface reflection and variations in the temperature and water-vapor profiles on the VAS measurements. It is shown that these effects are large and need to be considered. Some uncertainties that have risen from the theoretical model are studied; they demonstrate that the Mie-scattering theory should not be used to retrieve the microphysical and optical properties of cirrus clouds. A suitable cloud-microphysics model and a suitable scattering model are needed instead.  相似文献   

8.
9.
The celestial polarization pattern may be scrambled by refraction at the air-water interface. This polarization pattern was examined in shallow waters with a submersible polarimeter, and it was calculated by using land measurements ('semiempirical predictions') and models of the skylight polarization. Semiempirically predicted and measured e-vector orientations were significantly similar. Conversely, predicted percent polarization was correlated but lower than measurements. Percent polarization depended on wavelength, where at high sun altitudes maximal percent polarization generally appeared in the UV and red spectral regions. The wavelength dependency of polarization may lead to differential spectral sensitivity in polarization-sensitive animals according to time and type of activity.  相似文献   

10.
Polarization sensitive reflectometric measurements are effective tools for the characterization of polarization properties of optical-fiber links. These techniques show two advantages compared with the standard ones: they can perform measurements using only one fiber end (both for transmission and for reception of the probe signal) and, most important, they can characterize the local evolution of the polarization properties of the fiber link. Reflectometric measurements of differential group delay and fiber birefringence have been already successfully performed. More recently, the possibility of measuring, also, polarization dependent loss has been theoretically explored. In this paper the theory and main applications of polarization sensitive reflectometric techniques are reviewed.  相似文献   

11.
Measurement of the eye's wave aberrations has become fairly standard in recent years. However, most studies have not taken into account the possible influence of the polarization state of light on the wave aberration measurements. The birefringence properties of the eye's optical components, in particular corneal birefringence, can be expected to have an effect on the wave aberration estimates obtained under different states of polarization for the measurement light. In the work described, we used a psychophysical aberrometer (the spatially resolved refractometer) to measure the effect of changes in the polarization state of the illumination light on the eye's wave aberration estimates obtained in a single pass. We find, contrary to our initial expectation, that the polarization state of the measurement light has little influence on the measured wave aberration. For each subject, the differences in wave aberrations across polarization states were of the same order as the variability in aberrations across consecutive estimates of the wave front for the same polarization conditions.  相似文献   

12.
Kolgotin A  Müller D 《Applied optics》2008,47(25):4472-4490
We present the theory of inversion with two-dimensional regularization. We use this novel method to retrieve profiles of microphysical properties of atmospheric particles from profiles of optical properties acquired with multiwavelength Raman lidar. This technique is the first attempt to the best of our knowledge, toward an operational inversion algorithm, which is strongly needed in view of multiwavelength Raman lidar networks. The new algorithm has several advantages over the inversion with so-called classical one-dimensional regularization. Extensive data postprocessing procedures, which are needed to obtain a sensible physical solution space with the classical approach, are reduced. Data analysis, which strongly depends on the experience of the operator, is put on a more objective basis. Thus, we strongly increase unsupervised data analysis. First results from simulation studies show that the new methodology in many cases outperforms our old methodology regarding accuracy of retrieved particle effective radius, and number, surface-area, and volume concentration. The real and the imaginary parts of the complex refractive index can be estimated with at least as equal accuracy as with our old method of inversion with one-dimensional regularization. However, our results on retrieval accuracy still have to be verified in a much larger simulation study.  相似文献   

13.
Gordon HR  Zhang T 《Applied optics》1995,34(24):5552-5555
We report an algorithm that can be used to invert the radiance exiting the top and bottom of the atmosphere to yield the columnar optical properties of atmospheric aerosol under clear sky conditions over the oceans. The method is an augmentation of a similar algorithm presented by Wang and Gordon [Appl. Opt. 32, 4598 (1993)] that used only sky radiance, and therefore was incapable of retrieving the aerosol phase function at the large scattering angles that are of critical importance in remote sensing of oceanic and atmospheric properties with satellites. Well-known aerosol models were combined with radiative transfer theory to simulate pseudodata for testing of the algorithm. The tests suggest that it should be possible to retrieve the aerosol phase function and the aerosol single-scattering albedo accurately over the visible spectrum at aerosol optical thicknesses as large as 2.0. The algorithm is capable of retrievals with such large optical thicknesses because all significant orders of multiple scattering are included. We believe that combining an algorithm of this type with surface-based and high-altitude aircraft-based radiance measurements could be useful for studying aerosol columnar optical properties over oceans and large lakes. The use of the retrieval method is possible over the ocean because, unlike the land surface, the albedo of the ocean is low and spatially uniform.  相似文献   

14.
Simulation studies were carried out with regard to the feasibility of using combined observations from sunphotometer (SPM) and lidar for microphysical characterization of aerosol particles, i.e., the retrieval of effective radius, volume, and surface-area concentrations. It was shown that for single, homogeneous aerosol layers, the aerosol parameters can be retrieved with an average accuracy of 30% for a wide range of particle size distributions. Based on the simulations, an instrument combination consisting of a lidar that measures particle backscattering at 355 and 1574 nm, and a SPM that measures at three to four channels in the range from 340 to 1020 nm is a promising tool for aerosol characterization. The inversion algorithm has been tested for a set of experimental data. The comparison with the particle size distribution parameters, measured with in situ instrumentation at the lidar site, showed good agreement.  相似文献   

15.
We report here on the observation of unpolarized (neutral) points in the sky during the total solar eclipse on 11 August 1999. Near the zenith a neutral point was observed at 450 nm at two different points of time during totality. Around this celestial point the distribution of the angle of polarization was heterogeneous: The electric field vectors on the one side were approximately perpendicular to those on the other side. At another moment of totality, near the zenith a local minimum of the degree of linear polarization occurred at 550 nm. Near the antisolar meridian, at a low elevation another two neutral points occurred at 450 nm at a certain moment during totality. Approximately at the position of these neutral points, at another moment of totality a local minimum of the degree of polarization occurred at 550 nm, whereas at 450 nm a neutral point was observed, around which the angle-of-polarization pattern was homogeneous: The electric field vectors were approximately horizontal on both sides of the neutral point.  相似文献   

16.
Zieger P  Ruhtz T  Preusker R  Fischer J 《Applied optics》2007,46(35):8542-8552
We have designed an airborne spectrometer system for the simultaneous measurement of the direct sun irradiance and the aureole radiance in two different solid angles. The high-resolution spectral radiation measurements are used to derive vertical profiles of aerosol optical properties. Combined measurements in two solid angles provide better information about the aerosol type without additional and elaborate measuring geometries. It is even possible to discriminate between absorbing and nonabsorbing aerosol types. Furthermore, they allow to apply additional calibration methods and simplify the detection of contaminated data (e.g., by thin cirrus clouds). For the characterization of the detected aerosol type a new index is introduced that is the slope of the aerosol phase function in the forward scattering region. The instrumentation is a flexible modular setup, which has already been successfully applied in airborne and ground-based field campaigns. We describe the setup as well as the calibration of the instrument. In addition, example vertical profiles of aerosol optical properties--including the aureole measurements--are shown and discussed.  相似文献   

17.
Asseng H  Ruhtz T  Fischer J 《Applied optics》2004,43(10):2146-2155
We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.  相似文献   

18.
Cuesta J  Flamant PH  Flamant C 《Applied optics》2008,47(25):4598-4611
We present a so-called lidar and almucantar (LidAlm) algorithm that combines information provided by standard elastic backscatter lidar (i.e., calibrated attenuated backscatter coefficient profile at one or two wavelengths) and sunphotometer AERONET inversion of almucantar like measurements (i.e., column-integrated aerosol size distribution and refractive index). The purpose of the LidAlm technique is to characterize the atmospheric column by its different aerosol layers. These layers may be distinct or partially mixed, and they may contain different aerosol species (e.g., urban, desert, or biomass burning aerosols). The LidAlm synergetic technique provides the extinction and backscatter coefficient profiles, particle size distributions, and backscatter-to-extinction ratios for each aerosol layer. We present the LidAlm procedure and sensitivity studies. The applications are illustrated with examples of actual atmospheric conditions encountered in the Paris area.  相似文献   

19.
A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.  相似文献   

20.
Voss KJ  Liu Y 《Applied optics》1997,36(24):6083-6094
A new system to measure the natural skylight polarized radiance distribution has been developed. The system is based on a fish-eye lens, CCD camera system, and filter changer. With this system sequences of images can be combined to determine the linear polarization components of the incident light field. Calibration steps to determine the system 's polarization characteristics are described. Comparisons of the radiance measurements of this system and a simple pointing radiometer were made in the field and agreed within 10 % for measurements at 560 and 670 nm and 25 % at 860 nm. Polarization tests were done in the laboratory. The accuracy of the intensity measurements is estimated to be 10 %, while the accuracy of measurements of elements of the Mueller matrix are estimated to be 2 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号