首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
丝光沸石负载二氧化钛膜光催化降解邻氯苯酚   总被引:5,自引:0,他引:5  
利用溶胶法将TiO2负载在天然丝光沸石上制成TiO2薄膜,在125 W高压汞灯照射下,对邻氯苯酚溶液进行光催化氧化反应,研究负载后的催化剂活性。通过实验得出,沸石作为一种多孔性的催化剂载体,在反应中通过吸附作用增加催化剂表面的邻氯苯酚浓度,可显著提高光催化剂活性。  相似文献   

2.
This work focuses on the photocatalytic oxidation of gaseous methyl ethyl ketone chosen as a typical indoor air pollutant. Two types of TiO coatings were prepared and deposited on glass plates: one using the commercial Degussa P25 TiO2 and the other one by sol-gel method. The first objective of this study was to compare different ways of preparing thin films of sol-gel TiO2 coated on glass plates, taking into account their general aspect and their photocatalytic efficiency. Several parameters were tested, such as the stabilising agent, the glass type of the support, the number of coatings and the calcination temperature. One of the synthesised materials was then kept to carry out the following study. The study aimed to assess the influence of TiO2 coating types on the effect of water vapour. This was achieved by performing MEK photocatalytic degradation kinetics under two levels of humidity at a fixed temperature. Experimental results were then modelled by the Langmuir-Hinshelwood equation. The obtained parameters gave specific trends in function of the considered catalyst. The second part of this work was to identify MEK degradation byproducts during its photocatalytic oxidation. The main detected intermediate was acetaldehyde, followed by methyl formate. A MEK degradation pathway was then proposed.  相似文献   

3.
Environmental pollution by low concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D) is a concern these days due to ever increasingly stringent regulations. Photocatalysis with immobilized TiO2 fiber is a promising oxidation method. Laboratory experiments on photocatalytic degradation of 0.045 mmol l(-1) 2,4-D with the world's first high-strength TiO2 fiber catalyst were carried out in a continuous flow reactor in which the degradations were, in general, similar to those with high 2,4-D concentrations investigated elsewhere. Degradation and mineralization of 2,4-D were significantly enhanced with no initial pH adjustments. The rate constants for total organic carbon (TOC) without pH adjustment were about two-fold bigger than the pH adjustment cases. CO2 gas measurement and carbon mass-balance were carried out for the first time, where about 34% organic carbon converted into CO2 gas during four-hour oxidation. 2,4-Dichlorophenol (2,4-DCP), phenol, benzyl alcohol and two unknowns (RT = 2.65 and 3.78 min.) were detected as aromatic intermediates while Phenol was the new aromatic in HPLC analysis. Dechlorination efficiencies were high (> 70%) in all the cases, and more than 90% efficiencies were observed in chloride mass balance. Bigger flow rates and solution temperature fixed at 20 degrees C without pH adjustment greatly enhanced 2,4-D mineralization. These results can be an important basis in applying the treatment method for dioxin-contaminated water and wastewater.  相似文献   

4.
By fluorescence spectrometry method, molecular conformation changes of humic acid (HA) during the photocatalytic oxidation process were studied. Haloacetic acids formation potential (HAAFP) changes during the oxidation process were also measured. The results indicated that aromatic rings of HA decreased and conjugated double bonds were destroyed at the beginning of the process. Meanwhile, organic matter with large molecular weight decomposed into intermediates with smaller molecular weight, such as tryptophan and tyrosine. HA can be degraded almost completely, but not be mineralized thoroughly. Structures of the intermediates were changing during the oxidation process. Molecular structure transformation of HA led to the fluctuation tendency of the HAAFP changes during the photocatalytic oxidation process. HAAFP increased to 1.22 times that in raw water after 30 min of ultraviolet (UV) radiation, and decreased to 0.66 times that in raw water after 60 min of photocatalytic oxidation.  相似文献   

5.
A photoreactor has been set up to study the photodegradation of volatile organic compound (VOC) in situ. In the reactor, TiO2 and Pt/TiO2 photocatalysts were immobilized on to UV-transparent quartz support. Scanning electron microscope (SEM) studies and Brunauer-Emmett-Teller (BET) surface area measurements revealed that the quartz fiber support was mostly coated with catalyst with a total surface area of 4.0 +/- 0.3 m2/g. The photocatalytic activity of the photocatalysts was evaluated for the photodegradation of 160 ppm toluene-laden air. It was found that 50-70% of toluene was degraded within the first 5 min of UV illumination. Both TiO2 and Pt/TiO2 photocatalysts suffered from deactivation after 18 hours of continuous operation, and the photocatalysts' activity was significantly reduced. However, platinization doubled the photocatalyst life and delayed the onset of de-activation. The presence of moisture was found to shift the onset of catalyst de-activation to an earlier time. It is concluded that the de-activation of the photocatalyst was due to the accumulation of intermediates on the photocatalysts surface preventing the toluene being adsorbed on the photocatalyst surface for degradation.  相似文献   

6.
Technical-economical evaluation of the operation of oxidation ditches.   总被引:2,自引:0,他引:2  
The optimisation of the economic performance is a central aspect in the management of wastewater treatment plants. A model-based procedure was developed that could provide a clearly enunciated and concise way of reporting to the stakeholders on how well the assets are performing and can perform, separating the firm inefficiency from the effect of the treatment. The applied modelling method is conventional considering current modelling research practice, but very good from practical point of view in that it is applicable utilising existing plant data, i.e. without the use of additional measuring campaigns. This paper illustrates the validity of the developed procedures through the evaluation of the performance of oxidation ditches.  相似文献   

7.
Methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) were oxidized in the gas phase by photocatalytic oxidation (PCO). Transient PCO was carried out at room temperature on TiO2 (Degussa P25), 0.2% Pt-TiO2, and 2% Pt-TiO2 catalysts. Surface-adsorbed reaction by-products were characterized by temperature-programmed desorption (TPD) and oxidation (TPO). Continuous flow PCO was also carried out at 373 K on TiO2. Acetone, H2O, and CO2 were the gas-phase products for PCO of TBA and MTBE, and formic acid was adsorbed on the TiO2 surface. Temperature-programmed desorption of TBA and MTBE formed 2-methyl-1-propene, water (TBA), and methanol (MTBE). During continuous-flow PCO, acetone desorbed in molar amounts equal to the amount of decomposed TBA and MTBE. The Pt/TiO2 catalysts had higher rates of complete oxidation during PCO and TPO. Injection of water during transient PCO increased the rates of oxidation of adsorbed TBA, formic acid, and acetone. Photocatalytic oxidation of TBA proceeded faster in humid air than dry air, but MTBE oxidation was less sensitive to humidity. The TiO2 catalyst was stable for MTBE, TBA, and acetone PCO at 373 K. The PCO at low conversions followed the Langmuir-Hinshelwood model.  相似文献   

8.
Investigations on anoxic sulfide oxidation in wastewater under sewer conditions are presented. Batch tests were designed and conducted to study both chemical and biological sulfide oxidation by nitrate in the water phase. Oxidation at pH 7.0 and 8.5 was performed in parallel and wastewater with anaerobic storage period of 0, 3, 4, 6 days was used. Initial sulfide concentrations at a level of 0-4.1 g S m(-3) were applied by either addition or sulfate reduction. Results showed that wastewater in sewers was capable of biological, but not chemical, sulfide oxidation under anoxic conditions. Elemental sulfur was the end-product during the experiment. Nitrite accumulates in wastewater as an intermediate. The anoxic oxidation rates for fresh wastewater was 0.48 g S m(-3) h(-1) at pH 7.0 and 0.62 g S m(-3) h(-1) at pH 8.5, which accounted for less than 30% of the potential aerobic oxidation rates. A long-term anaerobic adaptation of the wastewater was found to inhibit the oxidation process.  相似文献   

9.
针对新型光催化剂Bi2WO6在可见光条件下光生电子-空穴分离效率低的问题,本文采用液固相水热反应的方法制备了F/Ce掺杂改性的Bi2WO6光催化剂。通过X射线粉末衍射(XRD)、扫描电镜(SEM)和紫外-可见漫反射(UV-vis DRS)等分析表明,F/Ce掺杂Bi2WO6光催化剂具有明显的层状结构,可有效降低电子-空穴的复合率,且改性后的Bi2WO6吸收波长发生红移。光催化氧化处理甲基橙降解实验结果表明:F和Ce共掺杂下Bi2WO6在可见光下具有最高的光催化活性,主要活性物质为羟基自由基(·OH),甲基橙的降解率在50 min后可以达到97%,催化活性比纯Bi2WO6提高了近2倍。本研究为研发水环境中高浓度有机废水,特别是难降解有机污染物的高效治理技术提供了基础数据。  相似文献   

10.
The electrochemical advanced oxidation process (EAOP) using boron doped diamond (DiaChem, registered trademark of Condias GmbH) has been studied for wastewater treatment and drinking water disinfection. DiaChem electrodes consist of preferentially metallic base materials coated with a conductive polycrystalline diamond film by hot-filament chemical vapour deposition. They exhibit high overpotential for water electrolysis as well as high chemical inertness and extended lifetime. In particular the high overpotential for water decomposition opens the widest known electrochemical window, allowing the energy efficient production of hydroxyl radicals directly from aqueous solutions. The hydroxyl radicals on the other hand are effectively used for the oxidation of pollutants. The EAOP using DiaChem electrodes thus facilitates the direct and, if necessary, complete decomposition of even hazardous or persistent pollutants in different wastewaters. Current efficiencies of more than 90%, also without the use of additives for hydroxyl radical generation, have been demonstrated. Additionally, for drinking water preparation diamond electrodes facilitate disinfection with and without the support of chlorine.  相似文献   

11.
This review attempts to present a state-of-the art overview of the underlying principles of photocatalysis that should not be neglected when designing pilot-scale facilities. In particular, the roles and properties of the primary charge carriers generated upon bandgap illumination within a photocatalyst particle, i.e. valence band hole and conduction band electron, are discussed. The chemical nature of the primary oxidant is critically assessed.  相似文献   

12.
In this study, the kinetics and stoichiometry of chemical sulfide oxidation of wastewater from sewer networks were investigated. Based on experiments, it was shown that the stoichiometry could be considered identical for wastewater from two sampling sites. However, the kinetics differed significantly among the wastewaters from the two sites. Effects of pH and temperature were investigated in the pH and temperature ranges 5-9 and 5-25 degrees C, respectively. The rate of chemical sulfide oxidation could be related to the dissociation of H2S to HS-, with HS- being oxidized at a higher rate than H2S. The temperature dependency of the chemical sulfide oxidation rate was described using an Arrhenius relationship. The oxidation rate was found to double with a temperature increase of 12 degrees C. The stoichiometry of the chemical oxidation was not significantly affected by varying pH and temperature. Based on the experiments, a general rate equation, including a stoichiometric coefficient describing chemical sulfide oxidation in wastewater was proposed, enabling the process to be incorporated into sewer process models that can predict odor and corrosion problems.  相似文献   

13.
In this study a poorly biodegradable (BOD/COD = 0.3) industrial alkaline ECF bleaching filtrate was treated using different advanced oxidation processes to evaluate their use in combined chemical-biological treatment aimed at increasing recalcitrant COD removal and improving final effluent quality. Oxidative treatments included ozonation combined with hydrogen peroxide (2, 5, 10, 20 mmol L(-1) O3/0.7, 2, 5, 10 mmol L(-1) H2O2) and photocatalysis with hydrogen peroxide (UV/2, 4 and 8 mmolL(-1) H2O2) and with TiO2 (UV/TiO2/0.7 and 4 mmol L(-1) H2O2). The O3/H2O2 process increased effluent biodegradability by up to 68% as a result of increasing BOD and decreasing COD. Increasing the O3 dose had a greater effect on biodegradability improvement and lignin and colour removal efficiencies than increasing the H2O2 dose. A combined oxidant dose of 5 mmol L(-1) O3 and 2 mmol L(-1) H2O2 resulted in 75% lignin removal, 40% colour removal and 6% carbohydrate loss without mineralizing the organic carbon. The photocatalytic processes led to a decrease in effluent biodegradability through combined decrease in BOD and increase in COD and did not result in efficient lignin or colour removal. Photocatalytic oxidation was apparently inhibited by the high chloride and COD levels in the alkaline filtrate, and may be more efficient in recalcitrant COD removal if performed after biological.  相似文献   

14.
Di(2-ethylhexyl)phthalate (DEHP) is a ubiquitous environmental contaminant due to its extensive use as a plasticiser and its persistence. Currently, there is no cost-effective treatment method for its removal from industrial wastewater. In a previous study, DEHP was effectively adsorbed from aqueous solution by biosorption onto chitinous materials. Biosorption can pre-concentrate DEHP from the aqueous phase for further treatment. As biosorption cannot degrade DEHP, in this study the degradation (and detoxification) of DEHP adsorbed onto chitinous material by photocatalytic oxidation (PCO) is attempted. PCO relies on hydroxyl radical (.OH), which is a strong oxidising agent, for the oxidative degradation of pollutants. It is a non-selective process which can degrade DEHP adsorbed onto chitinous material. The first part of this study is the optimisation of the degradation of adsorbed DEHP by PCO. Adsorption was carried out in the physicochemical conditions optimised in the previous study, with 500 mg/L chitin A and 40 mg/L DEHP at initial pH 2, 22+/-2 degrees C and 150 rpm agitation for 5 min. After optimisation of PCO, a 61% removal efficiency of 10 mg/L of DEHP was achieved within 45 min under 0.65 mW/cm2 of UV-A with 100 mg/L TiO2, and 10 mM of H2O2 at initial pH 12. The optimisation study showed that UV-A and TiO(2) are essential for the degradation of DEHP by PCO. The degradation intermediates/products were identified by GC-MS analysis. GC-MS results showed that the di(2-ethylhexyl) side chain was first degraded, producing phthalates with shorter side chains. Further reaction produced phathalic anhydride and aliphatic compounds such as alkanol and ester. The toxicities of parental and degradation intermediates in the solution phase and on chitinous materials were followed by the Microtox test. Results indicated that toxicity can be removed after 4 h treatment by PCO. Thus the decontamination of DEHP by integrating biosorption and PCO is feasible.  相似文献   

15.
Pharmaceuticals or their metabolites are partially excreted with urine or faeces ending up in raw sewage. Many of these substances are not biodegradable and their presence in influents of municipal wastewater treatment plants may cause adverse effects to sensitive biological processes such as nitrification, while on the other hand, they may go through the activated sludge process unreacted. The second step of nitrification, i.e. oxidation of nitrite to nitrate is particularly sensitive. Inhibition of this step under uncontrolled conditions may lead to accumulation of nitrite nitrogen in the plant effluent, a form of nitrogen which is particularly toxic. The effects caused by the presence of seven different pharmaceuticals to a culture of nitrite-oxidizing bacteria isolated from activated sludge are presented. These pharmaceuticals were ofloxacin, propranolol, clofibrate, triclosan, carbamazepine, diclofenac and sulfamethoxazole. Different effects were observed for each of the pharmaceuticals tested in this study. In the cases of ofloxacin and sulfamethoxazole significant inhibition was observed. Triclosan presented a substantial inhibitory effect on the substrate (nitrite) reduction rate. The long-term effect of triclosan on nitrite oxidizers was also examined in a CSTR reactor and conclusions were drawn regarding the reversibility of the inhibition caused by this compound.  相似文献   

16.
Wine industry wastewaters contain a high concentration of organic biodegradable compounds as well as a great amount of suspended solids. These waters are difficult to treat by conventional biological processes because they are seasonal and a great flow variation exists. Photocatalytic advanced oxidation is a promising technology for waters containing high amounts of organic matter. In this study we firstly investigated the application of H2O2 as oxidant combined with light (artificial or natural) in order to reduce the organic matter in samples from wine industry effluents. Secondly, we studied its combination with heterogeneous catalysts: titanium dioxide and clays containing iron minerals. The addition of photocatalysts to the system reduces the required H2O2 concentration. Although the H2O2/TiO2 system produces higher efficiencies, the H2O2/clays system requires a H2O2 dosage between three and six times lower.  相似文献   

17.
The flow field of UV reactors was characterised experimentally using particle image velocimetry (PIV) and modelled with computational fluid dynamics (CFD). The reactor flow was integrated with the radiation fluence rate and photolysis kinetics to calculate the overall conversion of photo-reactant components in annular UV reactors with an inlet parallel and perpendicular to the reactor axis. The results indicated that the fluid flow distribution within the reactor volume affects photo-reactor performance.  相似文献   

18.
The use of advanced oxidation processes (AOPs) to remove pollutants in various water treatment applications has been the subject of study for around 30 years. Most of the available processes (Fenton reagent, O3 under basic conditions, O3/H2O2, O3/UV, O3/solid catalyst, H2O2/M(n+), H2O2/UV, photo-assisted Fenton, H2O2/solid catalyst, H2O2/NaClO, TiO2/UV etc.) have been investigated in depth and a considerable body of knowledge has been built up about the reactivity of many pollutants. Various industrial applications have been developed, including ones for ground remediation (TCE, PCE), the removal of pesticides from drinking water, the removal of formaldehyde and phenol from industrial waste water and a reduction in COD from industrial waste water. The development of such AOP applications has been stimulated by increasingly stringent regulations, the pollution of water resources through agricultural and industrial activities and the requirement that industry meet effluent discharge standards. Nevertheless, it is difficult to obtain an accurate picture of the use of AOPs and its exact position in the range of water treatment processes has not been determined to date. The purpose of this overview is to discuss those processes and provide an indication of future trends.  相似文献   

19.
In this study, the degradation of bisphenol A in aqueous suspension by interaction of photocatalytic oxidation and ferrate(VI) oxidation was investigated under different conditions. The results indicate that the formation of Fe(V) and Fe(IV) is in the photocatalytic reduction of Fe(VI) by electron (ecb-) on the surface of TiO2. The oxidation efficiency of the photocatalytic oxidation in the presence of Fe(VI) was much greater than that without. In addition, the decomposition of Fe(VI) under different conditions was also investigated. The results indicate that the Fe(VI) reduction was accelerated by photocatalytic reaction and the adsorption capacity of Fe(VI) on TiO2 surface decreased as pH increased. The characteristics of solid potassium ferrate prepared were investigated by X-ray diffraction. It was found that the potassium ferrate solid has a tetrahedral structure with a space group of D2h (Pnma) and a = 7.705 A, b = 5.863 A, and c = 10.36 A.  相似文献   

20.
The operation of two different reactor configurations (UASB and EGSB), while treating medium and low concentrated wastewater (MCW and LCW, respectively), was studied. The MCW (5 g COD/l) was initially supplied for reactor start up and granule maturation, being subsequently changed to the LCW (0.5 g COD/I), with which led the reactors to an unstable state associated with the deterioration of granule characteristics, in terms of extracellular polymeric substances (EPS) content and composition. The addition of pectin as an exogenous EPS was considered as a way to directly act on granule characteristics and its effect was studied by monitoring the operational parameters as well as by following the EPS content and composition within granules and the dynamics of microbial populations. The effect of adding pectin led to a significant recuperation of the operational performance in both reactors, associated with the increase in Archaea relative abundance, this likely related to the major presence of Methanosaeta-like microorganisms in granules with higher activity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号