首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N2 adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

2.
A highly hierarchically ordered macroporous–mesoporous Ce0.4Zr0.6O2 solid solution with crystalline framework walls was directly and simply prepared using polystyrene (PS) microspheres and a block copolymer as dual templates. The PS microspheres and block copolymer were assembled into colloidal crystals and mesoscopic rod-like micelles as macroporous and mesoporous templates, respectively, by a one-step process. This process offers a facile method to prepare hierarchically ordered porous materials. Compared to commercial ceria, the macroporous–mesoporous Ce0.4Zr0.6O2 material significantly improved the ultraviolet resistance and mechanical performance of a polysulfide polymer. Because the ordered macroporous–mesoporous Ce0.4Zr0.6O2 can disperse uniformly in the polysulfide polymer based on the open macroporous structure for diffusion and mobility and mesoporous structure for high surface areas. Furthermore, these results show that better-performing polysulfide polymers can be achieved by adding hierarchically structured materials.
  相似文献   

3.
We report a theoretical investigation of self-assembled nanostructures of polymer-grafted nanoparticles in a block copolymer and explore underlying physical mechanisms by employing the self-consistent field method. By varying the particle concentration or the chain length and density of the grafted polymer, one can not only create various ordered morphologies (e.g., lamellar or hexagonally packed patterns) but also control the positions of nanoparticles either at the copolymer interfaces or in the center of one-block domains. The nanostructural transitions we here report are mainly attributed to the competition between entropy and enthalpy.   相似文献   

4.
Inorganic fullerene-like WS2 and MoS2 nanoparticles have been synthesized using exclusively solid precursors, by reaction of the corresponding metal oxide nanopowder, sulfur and a hydrogen-releasing agent (NaBH4 or LiAlH4), achieved either by conventional furnace heating up to ∼900 °C or by photothermal ablation at far higher temperatures driven by highly concentrated white light. In contrast to the established syntheses that require toxic and hazardous gases, working solely with solid precursors permits relatively safer reactor conditions conducive to industrial scale-up.   相似文献   

5.
We present a facile and controllable method for the large-scale fabrication of highly-ordered octahedral Fe3O4 colloidal “single crystals” without the assistance of a substrate. Oleic acid is used to reduce the solubility of the nano-building blocks in colloidal solution and to induce a “crystallization” process. Our colloidal crystals are of multimicron size and show typical crystallographic characteristics. They have a very robust structure and can serve as a novel ordered magnetic mesoporous material with a relatively narrow pore size distribution. The sample possesses an extremely high Verwey transition temperature (T V) of 100 K and a high saturation magnetization (M S) of 86 emu/g at 5 K based on its good crystallinity, as well as the interparticle dipolar interaction behavior arising from its unique structure. Electrochemical measurements have demonstrated the excellent capacity of the mesoporous colloidal crystals when used in lithium-ion batteries.   相似文献   

6.
Synthesis of tubular nanomaterials has become a prolific area of investigation due to their wide range of applications. A facile solution-based method has been designed to fabricate uniform Bi2S3 nanotubes with average size of 20 nm × 160 nm using only bismuth nitrate (Bi(NO3)3·5H2O) and sulfur powder (S) as the reactants and octadecylamine (ODA) as the solvent. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and energy dispersive spectroscopy (EDX) experiments were employed to characterize the resulting Bi2S3 nanotubes and the classic rolling mechanism was applied to explain their formation process.   相似文献   

7.
Facile tuning of superhydrophobic states with Ag nanoplates   总被引:1,自引:0,他引:1  
GaAs wafers have been decorated with Ag nanoplates through direct galvanic reaction between aqueous AgNO3 solutions and GaAs, resulting in Ag nanoplate/GaAs composite surfaces with varying hydrophobocity after the Ag nanoplates are coated with self-assembled monolayers of alkyl thiol molecules. By carefully controlling the reaction conditions, such as growth time and concentration of the AgNO3 solution, the size, thickness, and surface roughness of the individual Ag nanoplates can be tuned in order to produce different topographic structures and roughness of the composite surfaces, which in turn infl uences the hydrophobicity of the surfaces. The as-synthesized composite surfaces have been found to exhibit various levels of hydrophobicity and different wetting states such as the Wenzel wetting state, Cassie impregnating wetting state, and Cassie nonwetting state. The relationship between surface structure and hydrophobic state is also discussed. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

8.
The energy challenge requires a broad range of options for energy harvesting, storage, and conversion. We have produced polymeric coatings by spraying, to be used as electrolyte and electrodes in a flexible electrochemical double layer capacitor. A thermoplastic polyurethane and a low molecular weight block copolyether were employed with LiClO4 to prepare solid polymeric electrolytes. Carbon black (CB) and multi-walled carbon nanotubes (MWNTs) were dispersed in the polymer blend electrolyte to produce nanostructured composite electrodes. The conductivities increased with the addition of block copolyether and carbon nanotubes to the electrolyte and electrode, respectively. Scanning electron microscopy (SEM) and atomic force microscope (AFM) images of the nanocomposite electrodes showed nanoagglomerates of CB connected by carbon nanotubes. The solid supercapacitor prepared with these new materials as electrolyte and electrodes showed superior performance to other similar systems. The resulting safe and flexible multilayer device can meet the requirements of modern devices.   相似文献   

9.
Uniform colloidal Bi2S3 nanodots and nanorods with different sizes have been prepared in a controllable manner via a hot injection method. X-ray diffraction (XRD) results show that the resulting nanocrystals have an orthorhombic structure. Both the diameter and length of the nanorods increase with increasing concentration of the precursors. All of the prepared Bi2S3 nanostructures show high efficiency in the photodegradation of rhodamine B, especially in the case of small sized nanodots—which is possibly due to their high surface area. The dynamics of the photocatalysis is also discussed.   相似文献   

10.
Chemistry gives us the ability to manipulate atoms and molecules into nanometer and micrometer scale building blocks, while the science of crystallography is concerned with the spatial arrangement of atoms, ions, and molecules and thus the morphology and structures of materials. Complex three-dimensional ZnS nanostructures have been fabricated via step-by-step crystallographically-controlled chemical processes. Tricrystals of ZnS whiskers were prepared via a controlled thermal evaporation process, and then the tricrystals were thermally treated in an atmosphere formed by evaporating B-N-O precursors into N2/NH3 to afford BN-coated arrays of nanobranches. The ZnS nanobranches grew epitaxially on the ternary facets and extended in three [0001] directions forming ordered nanostructures. Meanwhile, the protecting insulating sheath of BN formed on the ZnS nanostructures confined the growth of the nanospines and enhanced their stability. The method may be extended to fabricate other semiconductor nanomaterials with novel structures.   相似文献   

11.
The purpose of this review is to highlight developments in self-assembled nanostructured materials (i.e., mesoporous and nanoparticle-based materials) and their catalytic applications. Since there are many available reviews of metal-based nanoparticles as catalysts, this review will mainly focus on self-assembled oxide-based catalytic materials. The content includes: (1) design and synthetic strategies for self-assembled mesoporous catalysts, (2) polyoxometalate (POM)-based nanocatalysts, (3) dendrimer-based nanocatalysts, and (4) shaped nanomaterials and catalytic applications. We show that controlled assembly of molecules, crystalline seeds, and nano building blocks into organized mesoscopic structures or controlled morphologies is an effective approach for tailoring porosities of heterogeneous catalysts and controlling their catalytic activities. This article is published with open access at Springerlink.com  相似文献   

12.
We have demonstrated a facile and efficient strategy for the fabrication of soluble reduced graphene oxide sheets (RGO) and the preparation of titanium oxide (TiO2) nanoparticle-RGO composites using a modified one-step hydrothermal method. It was found that graphene oxide could be easily reduced under solvothermal conditions with ascorbic acid as reductant, with concomitant growth of TiO2 particles on the RGO surface. The TiO2-RGO composite has been thoroughly characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy, atomic force microscopy, and transmission electron microscopy) have been employed to probe the morphological characteristics as well as to investigate the exfoliation of RGO sheets. The TiO2-RGO composite exhibited excellent photocatalysis of hydrogen evolution.   相似文献   

13.
We report a novel nanotechnology-based approach for the highly efficient catalytic oxidation of phenols and their removal from wastewater. We use a nanocomplex made of multi-walled carbon nanotubes (MWNTs) and magnetic nanoparticles (MNPs). This nanocomplex retains the magnetic properties of individual MNPs and can be effectively separated under an external magnetic field. More importantly, the formation of the nanocomplex enhances the intrinsic peroxidase-like activity of the MNPs that can catalyze the reduction of hydrogen peroxide (H2O2). Significantly, in the presence of H2O2, this nanocomplex catalyzes the oxidation of phenols with high efficiency, generating insoluble polyaromatic products that can be readily separated from water.   相似文献   

14.
We demonstrate the role of catalysts in the surface growth of single-walled carbon nanotubes (SWNTs) by reviewing recent progress in the surface synthesis of SWNTs. Three effects of catalysts on surface synthesis are studied: type of catalyst, the relationship between the size of catalyst particles and carbon feeding rates, and interactions between catalysts and substrates. Understanding of the role of catalysts will contribute to our ability to control the synthesis of SWNTs on various substrates and facilitate the fabrication of nanotube-based devices.   相似文献   

15.
The strong hydrogen bonding ability of 2-pyridones were exploited to build nanotrains on surfaces. Carborane wheels on axles difunctionalized with 2-pyridone hydrogen bonding units were synthesized and displayed spontaneous formation of linear nanotrains by self-assembly on SiO2 or mica surfaces. Imaging using atomic force microscopy confirmed linear formations with lengths up to 5 μm and heights within the range of the molecular height of the carborance-tipped axles. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. This article is published with open access at Springerlink.com  相似文献   

16.
Hetero-nanostructures of plasmonic metals and semiconductors have attracted increasing attention in the field of photocatalysis.However,most of the hetero-nanostructured catalysts are randomly arranged and therefore require comprehensive structural design for optimizing their properties.Herein,we report the robust construction of hierarchical hetero-nanostructures where gold(Au)nanorods and molybdenum disulfide(Mo S2)quantum sheets(QSs)are integrated in highly ordered arrays.Such construction is achieved through porous anodic alumina(PAA)template-assisted electrodeposition.The as-fabricated hetero-nanostructures demonstrate exciting electrocatalysis towards hydrogen evolution reaction(HER).Both plasmon-induced hot-electron injection and plasmonic scattering/reabsorption mechanisms are determinative to the enhanced electrocatalytic performances.Notably,broadband photoresponses of HER activity in the visible range are observed,indicating their superiority compared with random systems.Such integrated hetero-nanoelectrodes could provide a powerful platform for conversion and utilization of solar energy,meanwhile would greatly prompt the production and exploration of ordered nanoelectrodes.  相似文献   

17.
This article reports the performances of dye-sensitized solar cells based on different working electrode structures, namely (1) highly ordered arrays of TiO2 nanorods, (2) highly ordered arrays of TiO2 nanotubules of different wall thicknesses, and (3) sintered TiO2 nanoparticles. Even though highest short-circuit current density was achieved with systems based on TiO2 nanotubules, the most efficient cells were those based on ordered arrays of TiO2 nanorods. This is probably due to the higher open-circuit photovoltage values attained with TiO2 nanorods compared with TiO2 nanotubules. The nanorods are thicker than the nanotubules and therefore the injected electrons, stored in the trap states of the inner TiO2 particles, are shielded from recombination with holes in the redox electrolyte at open-circuit. The high short-circuit photocurrent densities seen in the ordered TiO2 systems can be explained by the fact that, in contrast to the sintered nanoparticles, the parallel and vertical orientation of the ordered nanostructures provide well defined electron percolation paths and thus significantly reduce the diffusion distance and time constant.   相似文献   

18.
A nanocomposite of CoO and a mesoporous carbon (CMK-3) has been studied as a cathode catalyst for lithium-oxygen batteries in alkyl carbonate electrolytes. The morphology and structure of the as-prepared nanocomposite were characterized by field emission scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. The electrochemical properties of the mesoporous CoO/CMK-3 nanocomposite as a cathode catalyst in lithium-oxygen batteries were studied using galvanostatic charge-discharge methods. The reaction products on the cathode were analyzed by Fourier transform infrared spectroscopy. The CoO/CMK-3 nanocomposite exhibited better capacity retention than bare mesoporous CMK-3 carbon, Super-P carbon or CoO/Super-P nanocomposite. The synergistic effects arising from the combination of CoO nanoparticles and the mesoporous carbon nanoarchitecture may be responsible for the optimum catalytic performance in lithium-oxygen batteries.   相似文献   

19.
One-dimension carbon self-doping g-C3N4 nanotubes (CNT) with abundant communicating pores were synthesized via thermal polymerization of saturated or supersaturated urea inside the framework of a melamine sponge for the first time. A ~16% improvement in photoelectric conversion efficiency (η) is observed for the devices fabricated with a binary hybrid composite of the obtained CNT and TiO2 compared to pure TiO2 device. The result of EIS analysis reveals that the interfacial resistance of the TiO2-dye|I3?/I? electrolyte interface of TiO2-CNT composite cell is much lower than that of pure TiO2 cell. In addition, the TiO2-CNT composite cell exhibits longer electron recombination time, shorter electron transport time, and higher charge collection efficiency than those of pure TiO2 cell. Systematic investigations reveal that the CNT boosts the light harvesting ability of the photovoltaic devices by enhancing not only the visible light absorption but also the charge separation and transfer.
  相似文献   

20.
This paper explores the capability of the “surface-protected etching” process for the creation of rattle-type SiO2@void@SiO2 colloidal structures featuring a mesoporous silica shell and a mesoporous movable silica core. The surface-protected etching process involves stabilization of the particle surface using a polymer ligand, and then selective etching of the interior to form hollow structures. In this paper, this strategy has been extended to the formation of rattle-like structures by etching SiO2@SiO2 core shell particles which are synthesized by a two-step sol gel process. The key is to introduce a protecting polymer of polyvinylpyrrolidone (PVP) to the surface of both core and shell in order to tailor their relative stability against chemical etching. Upon reacting with NaOH, the outer layer silica becomes a hollow shell as only the surface layer is protected by PVP and the interior is removed, while the core remains its original size thanks to the protection of PVP on its surface. This process can be carried out at room temperature without the need of additional templates or complicated heterogeneous coating procedures. The etching process also results in the rattle-type colloids having mesoscale pores with two distinct average sizes. In our demonstration of a model drug delivery process, such mesoporous structures show an interesting two-step elution profile which is believed to be related to the unique porous rattle structures. This article is published with open access at Springerlink.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号