首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The α-Fe2O3 nanorods were successfully synthesized without any templates by calcining the α-FeOOH precursor in air at 300 °C for 2 h and their LPG sensing characteristics were investigated. The α-FeOOH precursor was prepared through a simple and low cost wet chemical route at low temperature (40 °C) using FeSO4·7H2O and CH3COONa as starting materials. The formation of α-FeOOH precursor and its topotactic transformation to α-Fe2O3 upon calcination was confirmed by X-ray diffraction measurement (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis. The α-Fe2O3 nanorods exhibited outstanding gas sensing characteristics such as, higher gas response (∼1746-50 ppm LPG at 300 °C), extremely rapid response (∼3-4 s), relatively slow recovery (∼8-9 min), excellent repeatability, good selectivity and lower operating temperature (∼300 °C). Furthermore, the α-Fe2O3 nanorods are able to detect up to 5 ppm for LPG with reasonable response (∼15) at the operating temperature of 300 °C and they can be reliably used to monitor the concentration of LPG over the range (5-60 ppm). The experimental results clearly demonstrate the potential of using the α-Fe2O3 nanorods as sensing material in the fabrication of LPG sensors. Plausible LP G sensing mechanism of the α-Fe2O3 nanorods is also discussed.  相似文献   

2.
Nanostructured hollow spheres of SnO2 with fine nanoparticles were synthesized by ultrasonic atomization. Thick film gas sensors were fabricated by screen printing technique. Different surface modified films (Fe2O3 modified SnO2) were obtained by dipping them into an aqueous solution (0.01 M) of ferric chloride for different intervals of time followed by firing at 500 °C. The structural and microstructural studies of the samples were carried out using XRD, SEM, and TEM. The sensing performance of pure and modified films was studied by exposing various gases at different operating temperatures. One of the modified sample exhibited high response (1990) to 1000 ppm of LPG at 350 °C. Optimum amount of Fe2O3 dispersed evenly on the surface, adsorption and spillover of LPG on Fe2O3 misfits and high capacity of adsorption of oxygen on nanostructured hollow spheres may be the reasons of high response.  相似文献   

3.
Nanocrystalline cadmium indium oxide (CdIn2O4) thin films of different thicknesses were deposited by chemical spray pyrolysis technique and utilized as a liquefied petroleum gas (LPG) sensors. These CdIn2O4 films were characterized for their structural and morphological properties by means of X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The dependence of the LPG response on the operating temperature, LPG concentration and CdIn2O4 film thickness were investigated. The results showed that the phase structure and the LPG sensing properties changes with the different thicknesses. The maximum LPG response of 46% at the operation temperature of 673 K was achieved for the CdIn2O4 film of thickness of 695 nm. The CdIn2O4 thin films exhibited good response and rapid response/recovery characteristics to LPG.  相似文献   

4.
The intent of this work is to look at the effects of varying the La2CuO4 electrode area and the asymmetry between the sensing and counter electrode in a solid state potentiometric sensor with respect to NOx sensitivity. NO2 sensitivity was observed at 500-600 °C with a maximum sensitivity of ∼22 mV/decade [NO2] observed at 500 °C for the sensor with a La2CuO4 electrode area of ∼30 mm2. The relationship between NO2 sensitivity and area is nearly parabolic at 500 °C, decreases linearly with increasing electrode area at 600 °C, and was a mixture of parabolic and linear behavior 550 °C. NO sensitivity varied non-linearly with electrode area with a minima (maximum sensitivity) of ∼−22 mV/decade [NO] at 450 °C for the sensor with a La2CuO4 electrode area of 16 mm2. The behavior at 400 °C was similar to that of 450 °C, but with smaller sensitivities due to a saturation effect. At 500 °C, NO sensitivity decreases linearly with area.We also used electrochemical impedance spectroscopy (EIS) to investigate the electrochemical processes that are affected when the sensing electrode area is changed. Changes in impedance with exposure to NOx were attributed to either changes in La2CuO4 conductivity due to gas adsorption (high frequency impedance) or electrocatalysis occurring at the electrode/electrolyte interface (total electrode impedance). NO2 caused a decrease in high frequency impedance while NO caused an increase. In contrast, NO2 and NO both caused a decrease in the total electrode impedance. The effect of area on both the potentiometric and impedance responses show relationships that can be explained through the mechanistic contributions included in differential electrode equilibria.  相似文献   

5.
Nearly monodisperse Co3O4 nanocubes have been prepared by a microwave-assisted solvothermal (MS) method at 180 °C for 20 min. The samples are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD pattern and TEM images of the products illustrated that Co3O4 nanocubes had a cubic phase with a lateral size of ∼20 nm. The gas response of the Co3O4 nanocubes was studied to several typical organic gases. The Co3O4 nanocubes showed good gas sensing performance towards xylene and ethanol vapors with rapid and high responses at a low-operating temperature. The results showed that the Co3O4 nanocubes can be used to fabricate high performance gas sensors.  相似文献   

6.
In2O3 hollow spheres with shell thicknesses of ∼150 nm and ∼300 nm were prepared by the one-pot synthesis of indium-precursor-coated carbon spheres via hydrothermal reaction and subsequent removal of core carbon by heat treatment. The gas response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) of the thin hollow spheres to 100 ppm C2H5OH was 137.2 at 400 °C, which was 1.86 and 3.84 times higher than that of the thick hollow spheres and of the nanopowders prepared by precipitation, respectively. The gas sensing characteristics are discussed in relation to the shell configuration of the hollow spheres. The enhanced gas response of the hollow spheres was attributed to the effective diffusion of analyte gas toward the entire sensor surface via very thin and nano-porous shells.  相似文献   

7.
N-type Fe2O3 nanobelts and P-type LaFeO3 nanobelts were prepared by electrospinning. The structure and micro-morphology of the materials were characterized by X-ray diffraction (XRD) and scanning of electron microscopy (SEM). The gas sensing properties of the materials were investigated. The results show that the optimum operating temperature of the gas sensors fabricated from Fe2O3 nanobelts is 285 °C, whereas that from LaFeO3 nanobelts is 170 °C. Under optimum operating temperatures at 500 ppm ethanol, the response of the gas sensors based on these two materials is 4.9 and 8.9, respectively. The response of LaFeO3-based gas sensors behaves linearly with the ethanol concentration at 10-200 ppm. Sensitivities to different gases were examined, and the results show that LaFeO3 nanobelts exhibit good selectivity to ethanol, making them promising candidates as practical detectors of ethanol.  相似文献   

8.
The conductometric gas sensing characteristics of Cr2O3 thin films - prepared by electron-beam deposition of Cr films on quartz substrate followed by oxygen annealing - have been investigated for a host of gases (CH4, CO, NO2, Cl2, NH3 and H2S) as a function of operating temperature (between 30 and 300 °C) and gas concentration (1-30 ppm). We demonstrate that these films are highly selective to H2S at an operating temperature of 100 °C, while at 220 °C the films become selective to Cl2. This result has been explained on the basis of depletion of chemisorbed oxygen from the surface of films due to temperature and/or interaction with Cl2/H2S, which is supported experimentally by carrying out the work function measurements using Kelvin probe method. The temperature dependent selectivity of Cr2O3 thin films provides a flexibility to use same film for the sensing of Cl2 as well as H2S.  相似文献   

9.
We report a novel route for the fabrication of highly sensitive and rapidly responding Nb2O5-based thin film gas sensors. TiO2 doping of Nb2O5 films is carried out by co-sputtering without the formation of secondary phases and the surface area of TiO2-doped Nb2O5 films is increased via the use of colloidal templates composed of sacrificial polystyrene beads. The gas sensitivity of Nb2O5 films is enhanced through both the TiO2 doping and the surface embossing. An additional enhancement on the gas sensitivity is obtained by the optimization of the bias voltage applied between interdigitated electrodes beneath Nb2O5-based film. More excitingly, such a voltage optimization leads to a substantial decrease in response time. Upon exposure to 50 ppm CO at 350 °C, a gas sensor based on TiO2-doped Nb2O5 film with embossed surface morphology exhibits a very high sensitivity of 475% change in resistance and a rapid response time of 8 s under 3 V, whereas a sensor based on plain Nb2O5 film shows a 70% resistance change and a response time of 65 s under 1 V. Thermal stability tests of our Nb2O5-based sensor reveal excellent reliability which is of particular importance for application as resistive sensors for a variety gases.  相似文献   

10.
Unloaded ZnO and Nb/ZnO nanoparticles containing 0.25, 0.5 and 1 mol.% Nb were produced in a single step by flame-spray pyrolysis (FSP) technique. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. FSP yielded small Nb particles attached to the surface of the supporting ZnO nanoparticles, indicating a high SSABET. The morphology and accurate size of the primary particles were further investigated by TEM. Nb/ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thick films by spin coating technique. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The influence on a low dynamic range of Nb concentration on NO2 response (0.1-4 ppm) of thick film sensor elements was studied at the operating temperatures ranging from 250 to 350 °C in the presence of dry air. The optimum Nb concentration was found be 0.5 mol.% and 0.5 mol.% Nb exhibited an optimum NO2 response of ∼1640 and a short response time (27 s) for NO2 concentration of 4 ppm at 300 °C.  相似文献   

11.
Gas sensors were designed and fabricated using oxide nanofibers as the sensing materials on micro platforms using micromachining technology. Pure and Pt doped SnO2 nanofibers were prepared by electrospinning and their H2S gas sensing characteristics were subsequently investigated. The sensing temperatures of 300 and 500 °C could be attained at the heater powers of 36 and 94 mW, respectively, and the sensors showed high and fast responses to H2S. The responses of 0.08 wt% Pt doped SnO2 nanofibers to 4-20 ppm H2S, were 25.9-40.6 times higher than those of pure SnO2 nanofibers. The gas sensing characteristics were discussed in relation to the catalytic promotion effect of Pt, nano-scale morphology of electrospun nanofibers, and sensor platform using micro heater.  相似文献   

12.
13.
In order to further understand the different contributions to NOx sensing mechanism as well as the importance of electrode geometry, solid state potentiometric sensors with varying La2CuO4 sensing electrode thicknesses were studied. These sensors (with a Pt counter electrode) showed a dependence of NO2 sensitivity which decreased with increasing thickness in the temperature range of 550-650 °C. They also showed NO sensitivity that was independent of thickness at 400 °C and 600 °C, but varied at temperatures between. This behavior was attributed to multiple mechanistic contributions explained by Differential Electrode Equilibria.  相似文献   

14.
ZnO nanoparticles loaded with 0.2-2.0 at.% Pt have been successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate, as precursors dissolved in xylene and their acetylene sensing characteristics have been investigated. The particle properties were analyzed by XRD, BET, TEM, SEM and EDS. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spherical and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5-20 nm in width and 20-40 nm in length. In addition, very fine Pt nanoparticles with diameter of ∼1 nm were uniformly deposited on the surface of ZnO particles. From gas-sensing characterization, acetylene sensing characteristics of ZnO nanoparticles is significantly improved as Pt content increased from 0 to 2  at.%. The 2 at.% Pt loaded ZnO sensing film showed an optimum C2H2 response of ∼836 at 1% acetylene concentration and 300 °C operating temperature. A low detection limit of 50 ppm was obtained at 300 °C operating temperature. In addition, Pt loaded ZnO sensing films exhibited good selectivity towards hydrogen, methane and carbon monoxide.  相似文献   

15.
Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods   总被引:1,自引:0,他引:1  
Bundle-like α-Fe2O3 nanostructures were successfully synthesized by a simple calcination of β-FeOOH precursor derived from a hydrothermal method in the presence of poly(vinyl pyrrolidone). The as-prepared products were characterized by X-ray power diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The results indicated that bundle-like nanostructures were composed of well-aligned single crystalline nanorods with the diameters of 20-30 nm and the lengths of 200-300 nm. The gas sensing properties of as-prepared products were investigated. It was found that the sensor based on α-Fe2O3 nanostructure exhibited high response, quick response-recovery, and good repeatability to acetone at 250 °C.  相似文献   

16.
This paper focuses on the gas sensing properties of the mixed-potential-type NO2 sensor based on yttria stabilized zirconia (YSZ) and NiO electrode. The sensing performance of the sensor was improved by modifying the three-phase boundary (TPB). Hydrofluoric acid with different concentrations (10%, 20% and 40%) was used to corrode YSZ substrate to obtain large superficial area of TPB. The scanning electron microscope and atomic force microscopic images showed that the 40% HF could form the largest superficial area at the same corroding time (3 h). The sensitivity of the sensor using the YSZ plate corroded with 40% hydrofluoric acid to 20-500 ppm NO2 was 76 mV/decade at 850 °C, which was the largest among the examined HF concentrations. It was also seen that the sensor showed a good selectivity and speedy response kinetics to NO2. On the basis of the measurements of anodic and cathodic polarization curves, as well as the complex impedance of the device, the sensing mechanism was confirmed to involve a mixed potential at the oxide sensing electrode.  相似文献   

17.
Indium oxide (In2O3) doped with 0.5-5 at.% of Ba was examined for their response towards trace levels of NOx in the ambient. Crystallographic phase studies, electrical conductivity and sensor studies for NOx with cross interference for hydrogen, petroleum gas (PG) and ammonia were carried out. Bulk compositions with x ≤ 1 at.% of Ba exhibited high response towards NOx with extremely low cross interference for hydrogen, PG and ammonia, offering high selectivity. Thin films of 0.5 at.% Ba doped In2O3 were deposited using pulsed laser deposition technique using an excimer laser (KrF) operating at a wavelength of (λ) 248 nm with a fluence of ∼3 J/cm2 and pulsed at 10 Hz. Thin film sensors exhibited better response towards 3 ppm NOx quite reliably and reproducibly and offer the potential to develop NOx sensors (Threshold limit value of NO2 and NO is 3 and 25 ppm, respectively).  相似文献   

18.
Pure and Cu-doped ZnO nanofibers were synthesized via electrospinning technology. The morphology and structure of the as-synthesized nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The effects of Cu doping on H2S sensing properties at low concentration (1-10 ppm) were investigated at 230 °C. The results show that the H2S sensing properties of ZnO nanofibers are effectively improved by Cu doping: 6 at% Cu-doped ZnO nanofibers show a maximum sensitivity to H2S gas, and the response to 10 ppm H2S is one order of magnitude higher than the one of pure ZnO nanofibers.  相似文献   

19.
Appreciable changes in resistance of polycrystalline nanosized CuNb2O6 upon exposure to reducing gases like hydrogen, liquefied petroleum gas (LPG) and ammonia in ambient atmosphere recognize the material as a gas sensor. Nanosized CuNb2O6 synthesized by thermal decomposition of an aqueous precursor solution containing copper nitrate, niobium tartrate and tri-ethanol amine (TEA), followed by calcination at 700 °C for 2 h, has been characterized using X-ray diffraction (XRD) study, transmission electron microscopy (TEM), field-emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) analysis and Brunauer–Emmett–Teller (BET) surface area measurement. The synthesized CuNb2O6 exhibits monoclinic structure with crystallite size of 25 nm, average particle size of 25–40 nm and specific surface area of 55 m2 g−1.  相似文献   

20.
Nb2O5-doped (1 − x)Ba0.96Ca0.04TiO3-xBiYO3 (where x = 0.01, 0.02, 0.03 and 0.04) lead-free PTC thermistor ceramics were prepared by a conventional solid state reaction method. X-ray diffraction, scanning electron microscope, Agilent E4980A and resistivity-temperature measurement instrument, were used to characteristic the lattice distortion, microstructure, temperature dependence of permittivity and resitivity-temperature dependence. It was revealed that the tetragonality c/a of the perovskite lattice, the microstructure and the Curie temperature changed with the BiYO3 content. In order to decrease the room temperature resistivity, the effect of Nb2O5 on the room temperature resistivity was also studied, and its optimal doping content was finally chosen as 0.2 mol%. The 0.97Ba0.96Ca0.04TiO3-0.03BiYO3-0.002Nb2O5 thermistor ceramic exhibited a low ρRT of 3.98 × 103 Ω cm, a typical PTCR effect of ρmax/ρmin > 103 and a Tc of 153 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号