共查询到15条相似文献,搜索用时 93 毫秒
1.
固溶处理对TWIP钢组织和力学性能的影响 总被引:1,自引:1,他引:1
用拉伸试验、金相观察、SEM和EDS等方法研究固溶温度和时间对TWIP钢微观组织、拉伸性能及断口形貌的影响,并采用X射线衍射仪测定材料的物相组成。结果表明,固溶温度和时间对TWIP钢塑性的影响程度明显大于强度,伸长率最佳的固溶处理工艺为1000~1050℃固溶60 min。随固溶温度的升高和固溶时间的延长,奥氏体晶粒长大,退火孪晶数量和退火孪晶界面积增加。拉伸时发生典型的延性断裂,拉伸前的组织为伴有大量退火孪晶的奥氏体,在拉伸过程中退火孪晶转变成形变孪晶,使TWIP钢的塑性提高。 相似文献
2.
3.
4.
5.
采用电化学结合低应变速率拉伸实验(SSRT)的方法和OM、SEM等手段研究了退火温度对Fe-18Mn-0.6C TWIP钢充氢条件下力学性能和变形行为的影响,并探讨了各类微观组织结构对氢致脆性的作用。结果表明,TWIP钢晶粒尺寸随退火温度的升高逐渐增大,700℃退火板晶界处容易观察到(Fe, Mn)3C渗碳体。900℃退火获得的中等尺寸均匀晶粒的TWIP钢具有最高的强塑积。在电化学充氢和SSRT同时进行下,TWIP钢的强度和塑性大幅下降,随退火温度的升高,强塑积损失率(R)呈增大趋势。高温退火得到的大尺寸晶粒在变形中更容易产生形变孪晶,孪晶/孪晶交叉位置和孪晶/晶界交叉位置是氢致裂纹的主要来源。尽管相对低温退火得到大尺寸晶粒和界面处层错能(SFE)变化使TWIP钢在变形中不容易产生形变孪晶,但其局部粗大的碳化物与形变孪晶间产生的应力集中处极易形成空位,演化成裂纹源,使相对低温退火的TWIP钢本身塑性不高。低于800℃退火对TWIP钢提高氢脆抵抗力没有明显作用。 相似文献
6.
通过金相检验、单轴拉伸试验、极限拉深试验及杯突试验研究了第二代先进高强度TWIP1000钢的显微组织、力学性能和胀形性能,并与第一代先进高强度DP600钢的组织和性能进行了对比。结果表明:TWIP1000钢的室温组织为奥氏体,奥氏体晶粒直径为5~15μm,DP600钢的室温组织由铁素体和马氏体组成; TWIP1000钢的抗拉强度为977 MPa,屈服强度为501 MPa,断后伸长率为62. 3%,应变硬化指数为0. 33;而DP600钢的抗拉强度为624 MPa,屈服强度为391 MPa,断后伸长率为28. 1%,应变硬化指数为0. 17,TWIP1000钢的力学性能显著优于DP600钢。此外,TWIP1000钢和DP600钢的极限拉深比分别为2. 31和2. 24,二者差异不明显。所有TWIP1000钢杯突试验的试样都未破裂,而DP600钢的平均杯突值为14. 51 mm,说明TWIP1000钢板的胀形性能优于DP600钢板。 相似文献
7.
采用真空熔炼法制备Fe-20Mn-3.0Cu-1.38C高强度高塑性合金钢,通过单向拉伸、X射线衍射(XRD)、光学显微镜(OM)和透射电子显微镜(TEM)方法研究了不同冷轧变形量(12.8%~73.37%)对该合金钢微观组织、力学性能的影响,分析了冷轧变形量为32.28%该合金钢的拉伸变形微观机制。结果表明,该合金冷轧变形前后均为单相奥氏体组织,无马氏体相变发生。随着冷轧变形量的增加,合金钢的屈服强度、抗拉强度均显著提高,伸长率则减小。当冷轧变形量为32.28%,该合金钢的规定非比例延伸强度高达1383.99 MPa,抗拉强度为1619.83 MPa,达到超强钢的水平,并仍然保留41.12%的伸长率,综合性能优异。该冷轧变量下的合金拉伸变形过程中,产生TWIP效应,位错的塞积、形变孪晶的产生以及位错与孪晶间的交互作用共同提高材料的塑性和强度。 相似文献
8.
通过对Fe-24Mn-0.7Si-1.0Al TWIP钢分别在700℃和1000℃退火不同时间,研究退火对合金显微结构和硬度的影响,并讨论了合金再结晶行为及其对组织性能的影响规律。结果显示:合金通过亚晶界迁移机制形成再结晶晶核,进而长大实现再结晶。合金分别在700℃保温5 min或1000℃保温1 min即可完成再结晶。完成再结晶后随着保温时间延长,晶粒尺寸先迅速增大后趋于饱和,而合金硬度先快速降低后趋于平缓。再结晶过程中位错的消失是导致硬度下降的主要原因。 相似文献
9.
以传统TWIP钢为对比,测试了含N TWIP钢的力学性能,并利用XRD进行物相分析和TEM进行做观结构表征.结果表明,在由fcc或hcp结构向bcc结构马氏体进行相变时,晶体结构中的最大间隙由0.1047 nm降低至0.0725 nm.间隙原子N的存在显著增大bcc结构的晶格畸变能,提高α马氏体切变的阻力,因而强烈抑制α马氏体相变,导致组织中hcp结构ε相含量大幅度增加,提高了TWIP钢的强度,但也降低了钢的塑性.另外,奥氏体平均和区域层错几率的计算及微观组织分析结果表明,形变增加层错的数量,而马氏体相变消耗层错,从而减少层错数量. 相似文献
10.
11.
12.
13.
14.
采用XRD、光学显微镜、扫描电镜、拉伸试验机和冲击试验机等研究了终轧温度(900 ℃和1000 ℃)对Cu合金化Fe-18Mn-0.6C TWIP钢微观组织和力学性能的影响。结果表明,低温终轧会明显提高TWIP钢的强度,但会使伸长率和强塑积降低;高温终轧更有利于提高TWIP钢塑性和室温冲击性能。高温终轧时可获得较大尺寸的奥氏体晶粒,降低孪生所需的临界应力,具有更高的应变强化能力,拉伸断口和冲击断口的韧窝更大更深,表现出优异的塑性和韧性。 相似文献
15.
采用光学显微镜(OM),X射线衍射仪(XRD),扫描电镜(SEM),透射电镜(TEM)等研究了热处理工艺对选区激光熔化(SLM)制备的304L不锈钢微观组织结构与力学性能的影响。结果表明:SLM制备的304L不锈钢的组织结构细小,组织中存在高密度位错、δ铁素体与σ相析出物,其强度和塑性均远高于传统304L不锈钢。对SLM制备的304L不锈钢分别进行1050℃×30 min和1000℃×2 h固溶处理后,其微观组织结构发生了变化,观察到了晶内胞状亚晶组织的长大和析出相的固溶,强度和塑性均有所降低。SLM制备过程产生的大量纳米级胞状亚晶结构,是304L不锈钢具有高强高韧性能的主要原因,析出强化和加工硬化可进一步提高其强度。 相似文献