共查询到19条相似文献,搜索用时 78 毫秒
1.
利用空气等离子孤喷涂(APS)技术制备Al2O3-3%TiO2复合粉末涂层.采用金相分析方法研究喷涂工艺参数对涂层组织和孔隙率的影响,从而确定合理的喷涂工艺参数. 相似文献
2.
孔隙率是评价Cr2O3涂层质量的重要指标之一。根据Box-Behnken二阶响应曲面法设计了3因素3水平的回归分析试验,采用大气等离子喷涂技术在TC4钛合金表面制备了Cr2O3涂层,以不同工艺条件下的涂层孔隙率作为响应值,建立了喷涂电流、等离子气体和喷距影响因子与响应输出之间的数学模型,讨论了3种影响因子的显著性及交互作用影响,得到涂层孔隙率的连续变量响应曲面和等高曲线。模型可以用于大气等离子喷涂Cr2O3涂层的工艺优化和性能预测,最小孔隙率的预测参数是电流I=500A,氩气流量QAr=40L/min和喷距d=80mm,能获得的最小孔隙率为1.5%。 相似文献
3.
4.
5.
涂层结构对Cr2O3涂层组织和性能的影响 总被引:3,自引:0,他引:3
采用等离子喷涂技术制备了3种结构的Cr2O3陶瓷涂层,即双层涂层,3层涂层和5层梯度涂层。探讨了涂层结构对涂层组织、抗拉结合强度、抗热震性和耐磨损性能的影响。结果表明,在涂层总厚度相同的条件下,采用多层复合涂层可提高Cr2O3涂层的结合强度、耐磨性和抗热冲击性,其中,5层结构涂层的综合性能最佳。涂层微观组织观察和显微硬度测试结果发现,5层结构涂层从基体到陶瓷层,涂层成分逐渐变化,具有梯度材料的特征。试验表明采用等离子喷涂技术可以制备梯度涂层。 相似文献
6.
利用等离子喷涂制备Al2O3/TiO2陶瓷涂层,通过扫描电镜分析了涂层的组织结构.重点探讨了不同含量的TiO2对涂层组织显微结构的影响和涂层形成机理.结果表明:随着TiO2含量增加,涂层质量较单一Al2O3质量明显提高. 相似文献
7.
用等离子喷涂工艺在Q235钢基体上制备Cr2O3陶瓷涂层,并采用磷酸铝和环氧树脂对其进行封孔处理。利用图像分析法和电化学方法对封孔前后涂层的孔隙率进行了测试,采用弱极化技术和电化学阻抗谱技术对封孔前后涂层的耐蚀性能进行了研究。结果表明,封孔处理提高了涂层的耐蚀性能,环氧树脂封孔涂层的耐蚀性能更优异;陶瓷涂层在腐蚀介质中耐蚀性能主要取决于涂层的孔隙率。 相似文献
8.
目的研究Al_2O_3添加量对Cr_2O_3/TiO_2/Al_2O_3/SiO_2四元复合陶瓷涂层性能的影响。方法采用等离子喷涂技术在油气管道X80管线钢基体表面制备出具有不同Al_2O_3含量的四元复合陶瓷涂层。另外,为探究基体温度对涂层性能的影响,所有涂层均在等离子喷枪预热及室温的两种基体上制备。所制涂层的气孔率、硬度、结合力及电化学腐蚀性能分别采用煮沸称重法、维氏硬度计、划痕仪、电化学工作站进行检测,并用X射线衍射仪(XRD)、扫描电镜(SEM)分析不同Al_2O_3含量涂层的物相组成和形貌特征,研究Al_2O_3含量对涂层各性能的影响。结果随着Al_2O_3含量的增加,Cr_2O_3/TiO_2/Al_2O_3/SiO_2四元复合陶瓷涂层的气孔率呈现先降低后增加的趋势,相对应的四元复合陶瓷涂层的结合力、维氏硬度则先增加后降低。当Al_2O_3质量分数为60%时,四元复合陶瓷涂层的性能最优,气孔率为3.6%,硬度为824.6HV,结合力为53.8N。电化学腐蚀测试表明,Al_2O_3能增强涂层的耐腐蚀性能,Al_2O_3质量分数为60%时,涂层自腐蚀电位最高,为-0.28 V。另外,在基体预热和不预热条件下,所制涂层性能随Al_2O_3含量的变化一致,但是基体预热比不预热更有利于涂层性能的提高。结论 Al_2O_3的添加不仅能够有效降低涂层Cr含量,还能显著提升四元复合陶瓷涂层的各项性能,特别是耐腐蚀性。此外,等离子喷涂前对基体进行预热,有利于涂层性能提高。 相似文献
9.
碳钢表面等离子喷涂Cr_2O_3涂层及其耐腐蚀性能 总被引:2,自引:0,他引:2
利用等离子喷涂技术在45~#钢表面喷涂Cr_2O_3涂层。用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射(XRD)等方法表征了涂层的微观形貌、表面元素组成以及相结构;测量了涂层的显微硬度;采用CS300P型电化学工作站检测了Cr_2O_3涂层的耐蚀性能。结果表明,在45~#钢表面等离子喷涂Cr_2O_3涂层的厚度约为100μm,相成分主要是Cr_2O_3;显微硬度值达到莫氏9级;喷涂Cr_2O_3涂层后的试样腐蚀速率显著降低,耐蚀性能明显提高。 相似文献
10.
目的在不锈钢表面制备一种可服役于高温富氧环境中的抗高温氧化防护涂层。方法采用MoSi_2-Al_2O_3团聚烧结粉末为喷涂原料,分别利用等离子喷涂和火焰喷涂两种工艺在310S不锈钢表面制备MoSi_2-Al_2O_3抗高温氧化涂层。采用SEM、EDS、XRD和粗糙度测量仪分析涂层的组织结构,使用拉伸法检测涂层的结合强度,采用高温氧化实验表征涂层的抗高温氧化性能。结果等离子喷涂涂层中的粉末熔化程度较火焰喷涂涂层更高,涂层呈现致密的堆叠结构且Si、O元素分布更为均匀。等离子喷涂涂层的结合强度为24.25 MPa,较火焰喷涂涂层提高了约68%。经1200℃高温氧化试验后,火焰喷涂涂层出现粉化,氧化剧烈并发生剥落,而等离子喷涂涂层未出现粉化现象,涂层结构完好。在高温氧化过程中,由于等离子喷涂涂层组织致密,可有效避免涂层粉化,均匀分布的Si元素在涂层氧化过程中更易产生SiO_2并对涂层裂纹进行有效填补,阻碍了氧原子向涂层内部扩散,因此涂层抗高温氧化性优异。结论采用等离子喷涂技术能够在310S不锈钢表面制备出组织结构、结合强度及高温性能更好的MoSi_2-Al_2O_3涂层。 相似文献
11.
目的提高304不锈钢表面的耐蚀性。方法选取304不锈钢为基体,采用溶胶凝胶法,制备陶瓷涂层。以异丙醇铝为前驱体制备Al2O3溶胶。通过XRD对干凝胶粉末进行物相分析,并对陶瓷涂层的耐腐蚀性能进行了研究,分析了制备溶胶的原料配比、胶溶剂的加入量、不同烧结温度对陶瓷涂层表面形貌和耐腐蚀性能的影响。结果 n异丙醇铝:n无水乙醇:n去离子=1:1:100、水浴温度70℃、p H=4~5时搅拌制备出的溶胶,在600℃下保温30 min可制备出无裂纹、均匀、高纯、表面质量良好的陶瓷涂层,陶瓷涂层为高纯的Al2O3。结论陶瓷涂层在Na Cl溶液和盐雾中表现出优异的耐蚀性。 相似文献
12.
目的改善H13钢表面纳米晶Cr镀层的微观结构和耐腐蚀性能。方法利用电沉积技术在H13钢表面制备纳米晶Cr镀层,并通过调整热处理工艺调控Cr镀层的结构和性能。通过扫描电子显微镜(SEM)、原子力显微镜(AFM)和X射线衍射仪(XRD)、维氏显微硬度计和中性盐雾试验(NSS)研究了不同热处理工艺下Cr镀层的表面形貌、粗糙度、相结构、硬度及耐蚀性。结果采用电沉积技术成功在H13钢表面制备出体心立方结构的纳米晶铬镀层,其晶粒和微裂纹尺寸随着热处理温度(200~600℃)和保温时间(1~2h)的增加而增大。当热处理温度达到400℃时,镀层表面检测到Cr2O3氧化层,并随着热处理温度和保温时间的增加,氧化程度逐渐增大。此外,Cr镀层硬度随着热处理温度和保温时间的增加而逐渐降低。在600℃下保温2h后,镀层硬度为(499.8±9.3)HV0.2,与镀态((749.0±13.2)HV0.2)相比,大约下降了33%。然而,经500℃和600℃热处理的镀层具有最好的耐蚀性能,盐雾试验后,镀层表面未见明显腐蚀缺陷,保护评级为10级。结论随着热处理温度和保温时间的增加,镀层晶粒变大,表面氧化程度加剧,耐蚀性能显著增强。 相似文献
13.
14.
目的同时改善镁合金的耐腐蚀和耐磨损性能。方法将镁合金表面进行羟基化处理,依次在1,2-双(三乙氧基硅基)乙烷(BTSE)和氧化石墨烯(GO)溶液中浸渍,反复进行,得到一定层数的自组装涂层。通过扫描电子显微镜(SEM)、能谱仪(EDS)表征自组装涂层的形貌和组成。通过电化学测试、摩擦磨损实验,研究涂层对镁合金耐腐蚀、耐磨损性能的影响,并通过扫描电子显微镜、光学显微镜(OM)和表面轮廓仪,对磨痕形貌、深度和宽度进行了分析。结果自组装涂层表面有氧化石墨烯的层片状结构,最外层的双硅烷分子层将底层完全覆盖,涂层具有较好的致密性和完整性。由极化曲线可得,GO/BTSE涂层将镁基底的腐蚀速率由1.45×10~(-1)mm/a减小到1.43×10~(-2)mm/a,降低了一个数量级。电化学阻抗谱的等效电路拟合结果表明,GO/BTSE涂层将裸镁合金的电荷转移电阻由562.2Ω·cm~2增大到1559Ω·cm~2。另外,磨损实验结果表明,镁合金具有较大的摩擦系数,在0.32~0.42范围内波动。涂覆GO/BTSE后,样品的摩擦系数明显降低,在0.20~0.23范围内波动。自组装涂层有效降低了基底合金的磨损率,由3.51×10~(-3)mm~3/(N×m)减小到3.24×10~(-5)mm~3/(N×m)。结论双硅烷和氧化石墨烯之间通过氢键连接,能够有效提高层片之间的结合力,使涂层致密,并且能够显著改善镁合金的耐蚀和耐磨性。 相似文献
15.
冷喷涂纯铝涂层耐腐蚀性能研究 总被引:3,自引:1,他引:3
目的研究冷喷涂纯铝涂层耐中性盐雾腐蚀性能,为冷喷涂技术在海洋大气防腐环境中的应用提供理论依据。方法采用冷喷涂技术在30Cr Mn Si A钢基体上制备纯铝涂层,利用金相组织分析、XRD衍射分析、电化学测试、中性盐雾试验等技术方法,考察冷喷涂涂层试样的耐腐蚀性能及其影响因素。结果冷喷涂涂层十分致密,随着喷涂温度和压力的不断提高,涂层的致密度不断增加,在喷涂温度为500℃、喷涂压力为1.2 MPa、喷涂距离为25 mm及工作气体为氮气的工艺条件下,纯Al涂层的孔隙率为0.5%,涂层中无氧化物存在,能够有效隔绝腐蚀介质和基体,为基体提供物理腐蚀防护。纯Al涂层的腐蚀速率为4.935×10?7 A/cm2,并作为阳极为基体提供电化学腐蚀防护,中性盐雾试验1440 h后无腐蚀。腐蚀形貌分析表明,在表面钝化膜防护及腐蚀产物的封闭作用下,冷喷涂纯铝涂层具有优异的耐腐蚀性能,虽然发生一定腐蚀,但腐蚀速率较小,表面质量良好,可以作为长效防腐涂层。结论冷喷涂纯铝涂层具有优异的耐腐蚀性能,可以为钢铁材料提供长效效防护。 相似文献
16.
采用低压等离子喷涂方法,制备了Q345A钢结构的单一Al涂层和Al-25%Cr-5%纳米SiO2复合涂层,并进行了人造酸雨全浸腐蚀和中性盐雾腐蚀的测试和分析.结果表明:低压等离子喷涂Al-25%Cr-5%纳米SiO2复合涂层,能显著提高钢结构的耐蚀性,且耐蚀效果较单一Al涂层好.与未经处理试样相比,喷涂了这种复合涂层的Q345A钢结构经20天人造酸雨全浸腐蚀后的质量损失率降低了91.90%,经10天中性盐雾腐蚀后的质量损失率从15.95%降至2.01%. 相似文献
17.
采用等离子喷涂工艺制备了2种Cr2O3陶瓷涂层(P7412和P7418,P7412粉末为市售,P7418粉末为自制),对2种涂层的组织结构、耐腐蚀性能进行了对比分析,并探讨了P7418涂层的抗生物附着机理。结果表明:2种涂层中各组分分布均匀,P7418涂层的孔隙率比P7412涂层略低;CuO的加入使得P7418涂层在10%HCl,10%NaOH和10%NaCl 3种腐蚀液中的耐腐蚀性能均比P7412涂层略差,但可以起到防止生物附着污染的效果。 相似文献
18.
目的为延长油墨刮刀的使用寿命,提高刮刀的耐蚀性能。方法采用电刷镀方法在高碳钢基体表面制备了Ni-P镀层和共沉积纳米Al_2O_3的Ni-P/Al_2O_3复合镀层。通过动电位极化曲线、腐蚀失重曲线和交流阻抗谱等方法研究了Ni-P镀层和Ni-P/Al_2O_3复合镀层在3.5%NaCl溶液中的腐蚀行为,采用扫描电子显微镜和能谱仪对两种镀层腐蚀前后的显微组织和成分进行分析。结果纳米Al_2O_3在Ni-P镀层中的共沉积,使镀层的腐蚀电位由-0.318 V正移到-0.237 V,自腐蚀电流密度由6.04μA下降到5.75μA,这是因为纳米Al_2O_3标准电位比Ni更正,在镀层中的均匀分布能使腐蚀电位正移,在腐蚀过程中形成Ni-P合金作为阳极、Al_2O_3粒子作为阴极的腐蚀微电池,促进阳极极化。共沉积纳米Al_2O_3后,Ni-P/Al_2O_3复合镀层的电化学反应电阻Rct值由1.066×104?·cm~2增大至2.864×104?·cm~2,双层电容Cd I值由43.45μF/cm~2下降到27.36μF/cm~2。与Ni-P镀层相比,Ni-P/Al_2O_3复合镀层表面结构更致密,缺陷更少,在腐蚀过程中,P和O元素在Ni-P镀层表面富集形成钝化膜,抑制腐蚀的进行。结论共沉积Al_2O_3纳米颗粒能有效改善Ni-P镀层的耐蚀性能。 相似文献