首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Thermal spray techniques can fulfill numerous industrial applications. Coatings are thus applied to resist wear and corrosion or to modify the surface characteristics of the substrate (e.g., thermal conductivity/thermal insulation). However, many of these applications remain inhibited by some deposit characteristics, such as a limited coating adhesion or pores or by industrial costs because several nonsynchronized and sequential steps (that is, degreasing, sand blasting, and spraying) are needed to manufacture a deposit. The PROTAL process was designed to reduce the aforementioned difficulties by implementing simultaneously a Q-switched laser and a thermal spray torch. The laser irradiation is primarily aimed to eliminate the contamination films and oxide layers, to generate a surface state enhancing the deposit adhesion, and to limit the contamination of the deposited layers by condensed vapors. From PROTAL arises the possibility to reduce, indeed suppress, the preliminary steps of degreasing and grit blasting. In this study, the benefits of the PROTAL process were investigated, comparing adhesion of different atmospheric plasma spray coatings (e.g., metallic and ceramic coatings) on an aluminum-base substrate. Substrates were coated rough from the machine shop, for example, manipulated barehanded and without any prior surface preparation. Results obtained this way were compared with those obtained using a classical procedure; that is, degreasing and grit blasting prior to the coating deposition.  相似文献   

2.
利用激光熔覆技术制备的高熵合金涂层已成为一种新兴的绿色清洁耐腐蚀涂层.为了最大程度发挥高熵合金涂层的耐腐蚀防护性能,需要探究激光熔覆高熵合金涂层耐腐蚀性能的影响因素及影响机理.首先阐述了高熵合金理论以及利用激光熔覆技术制备高熵合金涂层的优势,总结了高熵合金激光熔覆涂层优异耐腐蚀特性及耐腐蚀强化机理.重点综述了高熵合金元素组成、激光熔覆工艺参数、涂层后处理工艺以及服役温度4个因素,对高熵合金激光熔覆涂层耐腐蚀性能的影响规律与影响机理.高熵合金中适当添加Ni、Al、Ti等元素,在一定程度上可以提高涂层的耐腐蚀性,但是随着元素含量的进一步增加,由于高熵合金涂层的物相组成改变、晶格畸变严重、元素偏析加剧,可能导致涂层的耐腐蚀性能降低.适宜的激光加工参数可以使涂层具有较好的耐腐蚀性,原因在于涂层的缺陷较少、组织细密均匀.退火、激光重熔、超声冲击处理等涂层后处理工艺,通过改变高熵合金涂层的物相组成以及微观组织特征,来提高其耐腐蚀性.激光熔覆高熵合金涂层的服役环境温度越高,则腐蚀速率越快.最后,对激光熔覆高熵合金涂层的耐腐蚀性能强化方法进行了总结与展望.  相似文献   

3.
Laser Surface Engineering of Magnesium Alloys: A Review   总被引:1,自引:0,他引:1  
Magnesium (Mg) and its alloys are well known for their high specific strength and low density. However, widespread applications of Mg alloys in structural components are impeded by their insufficient wear and corrosion resistance. Various surface engineering approaches, including electrochemical processes (plating, conversion coatings, hydriding, and anodizing), gas-phase deposition (thermal spray, chemical vapor deposition, physical vapor deposition, diamond-like coatings, diffusion coatings, and ion implantation), and organic polymer coatings (painting and powder coating), have been used to improve the surface properties of Mg and its alloys. Recently, laser surface engineering approaches are attracting significant attention because of the wide range of possibilities in achieving the desired microstructural and compositional modifications through a range of laser?Cmaterial interactions (surface melting, shock peening, and ablation). This article presents a review of various laser surface engineering approaches such as laser surface melting, laser surface alloying, laser surface cladding, laser composite surfacing, and laser shock peening used for surface modification of Mg alloys. The laser?Cmaterial interactions, microstructural/compositional changes, and properties development (mostly corrosion and wear resistance) accompanied with each of these approaches are reviewed.  相似文献   

4.
热喷涂基体表面前处理技术的研究进展   总被引:4,自引:1,他引:3  
热喷涂涂层与基体机械咬合的结合机理决定了基体表面前处理是热喷涂涂层中非常重要的处理工艺。文中概述了当前广泛应用的喷砂处理的工艺特点,指出砂粒易在基体表面镶嵌和对基体造成损伤是喷砂工艺的主要缺点,讨论了喷砂对高温合金单晶材料和超高强钢疲劳性能的影响,研究了软质基体表面超音速火焰喷涂WC涂层的免喷砂工艺。同时介绍了近年来其他热喷涂基体表面前处理方面的研究热点,包括高压水射流处理技术、机械粗化技术以及激光表面前处理,并重点阐述了其基本原理、特点及应用情况。  相似文献   

5.
The photocatalytic capabilities of titanium dioxide are widely published. Reported applications of titania coatings include air purification, water purification and self-cleaning. Suspension spray has been highlighted as a possible route for the deposition of highly active nanostructured TiO2 coatings. Published work has demonstrated the capabilities of suspension plasma spray and high-velocity suspension flame spray; however, little work exists for suspension flame spray (SFS). Herein, these three suspension spray processes are compared as regards their capability to produce photocatalytic TiO2 coatings and their potential for industrial scale-up. A range of coatings were produced using each process, manipulating coating parameters in order to vary phase composition and other coating characteristics to modify the activity. The coatings produced varied significantly between the processes with SFS being the most effective technique as regards future scale-up and coating photoactivity. SFS coatings were found to be up to nine times more active than analogous coating produced by CVD.  相似文献   

6.
激光熔覆技术作为一种先进的材料表面改性技术,具有加工效率高、涂层稀释率低且与基体结合强度高、自动化程度高、环境友好等优点。在各类熔覆材料中,铁基合金在成分上与钢铁材料最为接近,且其成本相对较低,近年来在设备零部件表面强化和再制造领域得到广泛应用。结合国内外最新相关研究成果,从材料体系、工艺参数、外场辅助技术等方面对激光熔覆铁基合金涂层的研究进展进行了综述。总结了熔覆材料的选材依据以及铁基自熔性合金粉末、不锈钢粉末、铁基非晶合金粉末、铁基复合粉末等各类材料的特点和应用。系统讨论了激光功率、扫描速度、光斑直径、送粉速率等工艺参数对铁基涂层成形质量和微观组织及性能的影响机制,并介绍了工艺参数优化在高质量熔覆层制备中的应用。同时,论述了超声振动、电磁场、温度场等外场辅助技术在激光熔覆铁基合金涂层中的应用,阐明了外加能场对激光熔覆过程中熔池及凝固组织的作用机理。最后对激光熔覆铁基合金涂层未来的发展方向进行了展望。  相似文献   

7.
Thermal spray processes are widely used to deposit high-chromium, nickel-chromium coatings to improve high temperature oxidation and corrosion behavior. However, despite the efforts made to improve the present spraying techniques, such as high-velocity oxyfuel (HVOF) and plasma spraying, these coatings may still exhibit certain defects, such as unmelted particles, oxide layers at splat boundaries, porosity, and cracks, which are detrimental to corrosion performance in severe operating conditions. Because of the process temperature, only mechanical bonding is obtained between the coating and substrate. Laser remelting of the sprayed coatings was studied in order to overcome the drawbacks of sprayed structures and to markedly improve the coating properties. The coating material was high-chromium, nickel-chromium alloy, which contains small amounts of molybdenum and boron (53.3% Cr, 42.5% Ni, 2.5% Mo, 0.5% B). The coatings were prepared by HVOF spraying onto mild steel substrates. A high-power, fiber-coupled, continuous-wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF-sprayed coating using different levels of scanning speed and beam width (10 or 20 mm). Coating that was remelted with the highest traverse speed suffered from cracking because of the rapid solidification inherent to laser processing. However, after the appropriate laser parameters were chosen, nonporous, crack-free coatings with minimal dilution between coating and substrate were produced. Laser remelting resulted in the formation of a dense oxide layer on top of the coatings and full homogenization of the sprayed structure. The coatings as sprayed and after laser remelting were characterized by optical and electron microscopy (OM, SEM, respectively). Dilution between coating and substrate was studied with energy dispersive spectrometry (EDS). The properties of the laser-remelted coatings were directly compared with properties of as-sprayed HVOF coatings.  相似文献   

8.
针对钛合金在实际应用过程中存在硬度低、耐磨性差、高温易氧化以及生物活性低等问题,国内外学者利用陶瓷材料较高的硬度、优异的耐磨性和高温抗氧化性能的特点,以及激光熔覆技术可以实现涂层与基材的冶金结合,较高的冷却速率使涂层内部晶粒得到细化的优势,开展了钛合金表面激光熔覆陶瓷涂层的广泛研究。首先简要概括了钛合金表面激光熔覆陶瓷材料的特点,介绍了在激光熔覆过程中常见的陶瓷材料以及所具备的特殊性能。从陶瓷涂层制备方式和陶瓷材料体现的功能两个方面,综述了国内外的研究特点、现状和进展。对比分析了激光制备纯陶瓷涂层、激光制备陶瓷与金属合金复合涂层、激光原位合成陶瓷复合涂层、激光制备陶瓷梯度涂层的优缺点。介绍了在钛合金表面激光熔覆耐磨涂层、高温抗氧化涂层、耐蚀涂层和生物涂层的进展,分析了陶瓷材料在提高相关性能时所发挥的作用。最后针对钛合金表面激光熔覆陶瓷材料存在的问题,对钛合金表面激光熔覆陶瓷涂层未来的发展趋势进行了讨论与展望。  相似文献   

9.
激光功率对激光熔覆FeCoBSiNb涂层组织和性能的影响   总被引:2,自引:1,他引:1  
采用高功率半导体激光器在低碳钢表面激光熔覆了Fe-Co-B-Si-Nb合金涂层。借助光学显微镜、X射线衍射仪(XRD)、扫描电子显微镜(SEM)以及数显维氏硬度计,探讨了激光功率对涂层稀释率、物相组成、微观组织及其显微硬度的影响。试验结果表明:在其它工艺参数一定的情况下,激光功率越大,涂层稀释率越大;激光功率为1 050W时,涂层中部的物相分析表现为具有非晶特征的漫散射峰,微观组织由颗粒状晶体和无组织形貌特征的灰色基底组成,随着激光功率的增大,涂层中部的晶化相衍射峰逐渐增多增强,微观组织中出现"雪花"状晶体;涂层和基材结合区的微观组织以具有外延生长特征的平面晶和柱状树枝晶为主;涂层的平均硬度随激光功率的增大而降低。  相似文献   

10.
介绍了近年来高性能航空金属结构材料及特种涂层激光熔化沉积制备与成形的研究进展,包括航空高性能金属结构件激光熔化沉积快速成形制造技术及应用;难熔金属材料激光约束熔化沉积制备与成形;钛合金激光表面改性及过渡金属硅化物高温耐磨耐蚀多功能涂层.  相似文献   

11.
Thermal spray processes are widely used to protect materials and components against wear, corrosion and oxidation. Despite the use of the latest developments of thermal spraying, such as high-velocity oxy-fuel (HVOF) and plasma spraying, these coatings may in certain service conditions show inadequate performance,e.g., due to insufficient bond strength and/or mechanical properties and corrosion resistance inferior to those of corresponding bulk materials. The main cause for a low bond strength in thermalsprayed coatings is the low process temperature, which results only in mechanical bonding. Mechanical and corrosion properties typically inferior to wrought materials are caused by the chemical and structural inhomogeneity of the thermal-sprayed coating material. To overcome the drawbacks of sprayed structures and to markedly improve the coating properties, laser remelting of sprayed coatings was studied in the present work. The coating material was nickel-based superalloy Inconel 625, which contains chromium and molybdenum as the main alloying agents. The coating was prepared by HVOF spraying onto mild steel substrates. High-power continuous wave Nd:YAG laser equipped with large beam optics was used to remelt the HVOF sprayed coating using different levels of power and scanning speed. The coatings as-sprayed and after laser remelting were characterized by optical microscopy and scanning electron microscopy (SEM). Laser remelting resulted in homogenization of the sprayed structure. This strongly improved the performance of the laser-remelted coatings in adhesion, wet corrosion, and high-temperature oxidation testing. The properties of the laser-remelted coatings were compared directly with the properties of as-sprayed HVOF coatings and with plasma-transferred arc (PTA) overlay coatings and wrought Inconel 625 alloy.  相似文献   

12.
Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.  相似文献   

13.
热喷涂NiCrBSi基耐磨涂层的研究进展   总被引:4,自引:4,他引:0       下载免费PDF全文
徐海峰  肖金坤  张嘎  张超 《表面技术》2016,45(2):109-117,174
磨损失效是工业生产及材料使用寿命最主要的消耗方式之一,通过热喷涂表面涂层技术提高摩擦副表面摩擦磨损性能受到越来越多的关注。作为一种重要的表面处理技术,热喷涂在防腐、耐磨等方面均有出色的表现。NiCrBSi是以Ni、Cr为主要组元的Ni基自熔性合金,近年来,NiCrBSi基涂层在制备方法、性能表征和应用推广等方面都取得了重要进展。本文主要论述了热喷涂NiCrBSi和NiCrBSi-Mo涂层的自润滑性能、NiCrBSi-碳化物涂层的硬质相增强效果、NiCrBSi-氧化物涂层综合性能等方向的研究现状,分别对火焰重熔、激光重熔、炉内重熔及感应重熔NiCrBSi基涂层的原理、特点及相关应用实例进行了阐述,分析了这四种后处理重熔态涂层结构与磨损性能,着重比较添加组元和重熔工艺对涂层的组织结构、力学性能和耐磨损性能等方面的影响规律,并阐明了各自在机理上的异同。最后总结了NiCrBSi基耐磨涂层研究面临的主要问题,并针对这些问题,从材料、工艺和后处理方面提出了三点展望性建议。  相似文献   

14.
利用激光熔覆技术在医用钛金属表面制备生物活性陶瓷羟基磷灰石(HAP)涂层,是近年来世界各国生物医用植入材料及相关领域的研究热点之一。首先简要概括了HAP生物陶瓷涂层材料的特点与意义,介绍了医用钛金属材料与生物陶瓷材料的历史发展与特点,指出了已有技术制备的生物陶瓷涂层在制备与应用中存在的优缺点,介绍了激光熔覆制备生物陶瓷涂层的特点与优点。综述了国内外钛及钛合金表面激光熔覆制备HAP生物陶瓷涂层、激光快速成形生物陶瓷涂层及相关材料的研究特点、现状与进展。重点介绍了激光熔覆不同成分原材料、添加稀土成分与不同波长激光制备生物陶瓷涂层的机理,及激光熔覆制备生物陶瓷涂层的特点与优缺点。激光熔覆制备生物陶瓷涂层及相关材料是一个多学科交叉的研究领域,通过对钛合金的激光表面改性,激光熔覆制备生物陶瓷涂层在理论研究与临床应用上具有广阔的前景。最后对激光熔覆工艺制备合成HAP生物陶瓷涂层未来的研究方向进行了讨论与展望。  相似文献   

15.
采用冷喷涂辅助感应重熔和冷喷涂辅助激光重熔2种方法分别在45#钢表面制备FeCrMnAlCu高熵合金涂层。对高熵合金涂层的相组成、显微组织、硬度、耐磨性能进行表征与检测,研究2种工艺对涂层耐磨性能的影响。结果表明:2种工艺合成的FeCrMnAlCu高熵合金涂层均由体心立方(bcc)和面心立方(fcc)相组成,涂层组织致密,元素分布均匀。涂层微观组织均为树枝晶+枝晶间组织,枝晶区主要由Mn、Cr和Fe元素构成,枝晶间主要为Cu,Al元素均匀地分布在枝晶和枝晶间。冷喷涂辅助感应重熔合成的FeCrMnAlCu高熵合金涂层中bcc晶格应变大于激光重熔合成的高熵合金涂层的晶格应变。冷喷涂辅助感应重熔合成FeCrMnAlCu高熵合金涂层的显微硬度是冷喷涂辅助激光重熔合成涂层硬度的1.2倍,是45#钢基体硬度的3.5倍。FeCrMnAlCu高熵合金涂层在摩擦过程中主要以磨粒磨损为主,采用冷喷涂辅助感应重熔合成的FeCrMnAlCu高熵合金涂层具有良好的耐磨性能,其磨损率比冷喷涂辅助激光重熔合成涂层的磨损率降低29%。  相似文献   

16.
Lasers have been used to improve the ultimate performance of thermal spray coatings for specific applications, but the full potential of additional laser treatments must be further explored. Laser treatments (auxiliary processes) can be applied before, during or after thermal spraying (main process), leading to a wide range of coating improvements (microstructure, adhesion, etc.). The aim of this review is to introduce the most significant laser treatments for thermal spray applications. The potential improvements for thermal spray coatings are illustrated by a selection of representative research cases. Laser pretreatments (ablation and texturing) promote coating/substrate adhesion and are suitable to prepare the surface of sensitive substrates such as aluminum, titanium, or magnesium alloys. The use of these techniques, which leads to several benefits such as surfaces free of grit-particle inclusions, directly improves the quality of coatings. Laser treatments applied simultaneously during the spraying process deeply modify the coatings microstructure. These hybrid technologies allow in situ laser melting of coatings, resulting in improved mechanical properties and enhanced wear and corrosion behaviors. Finally, laser posttreatments can improve coatings density and adhesion, and also induce phase transformations and structure refinement. As a summary, laser treatments seem particularly promising for improving the thermal spray coating microstructure and the coating/substrate adhesion. In addition, they offer a more environmentally friendly alternative to the conventional surface preparation treatments.  相似文献   

17.
表面织构是提高工程材料摩擦学性能有效的表面改性方法之一。近年来多种表面织构技术已被应用于提高材料表面减摩耐磨性能,而在众多表面织构化技术中,激光表面织构技术由于具有加工速度快、生产效率高、可控性好等优点而被广泛应用。综述了激光表面织构的最新进展及应用,讨论了目前激光表面织构技术存在的问题及解决方法,总结了3种不同加工原理下的激光处理方法存在的问题,包括形状参数难控制、精度较差及灵活性较低等,并介绍了液相辅助加工技术在激光表面织构技术中的应用,同时分析了不同工艺参数包括密度、形状及深度等对材料摩擦学性能的影响。综述了激光表面织构技术复合涂层技术的研究现状,其中激光表面织构与非金属或金属涂层复合,包括氧化石墨烯填充PTFE涂层复合激光表面织构、复合热丝化学气相沉积增强激光表面织构、复合电液雾化增强激光表面织构及复合激光熔覆技术增强激光表面织构。总结了激光表面织构技术结合不同润滑技术对材料摩擦学性能的影响。最后展望了激光表面织构在各个领域的未来发展方向。  相似文献   

18.
The processing technique is decisive for the characteristics of a coating. This is because the heat supply, which depends on the technique and on the parameters, has an influence on the dilution and the solidification rate. In alloys with low metallurgical complexity, the effect of processing with deposition techniques that give a higher cooling rate may be translated into refining of the microstructure. A more refined microstructure is expected to result in higher mechanical strength of the coating. However, in the deposition of alloys that are more complex metallurgically this does not always occur, because the high cooling rate may suppress formation/precipitation of phases responsible for strength. The influence of processing on the microstructure and hardness of coatings of alloy Colmonoy-6® was assessed in this study. The alloy was processed by plasma transferred arc and high-power diode laser on plates of AISI 304 with two levels of dilution. In both cases, good-quality, defect-free coatings were obtained. Increase in Fe content (dilution) and different cooling rates result from processing with different parameters and techniques. This leads to significant changes in microstructure and hardness of the coatings, associated with the distribution, morphology and chemical composition of the carbides and particularly of the borides.  相似文献   

19.
A plasma-sprayed 8 wt.% yttria partially stabilized zirconia coating doped with 3 wt.% SiO2 was remelted by laser. The microstructure of the as-sprayed and laser-remelted coatings was characterized by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), transmission electron microscopy (TEM), and x-ray diffraction (XRD). The effect of laser remelting on the hardness, wear resistance, and thermal shock resistance of the coatings was also studied. The laser-remelted coating consists of fine solidification grains without the presence of pores and cracks. The elements are uniformly distributed in the laser-remelted coating. Nontransformable tetragonal (t′) phase is predominant in the laser-remelted coating with a small amount of cubic phase. Laser remelting greatly enhanced the hardness, wear resistance, and thermal shock resistance of the coatings, and should find more applications.  相似文献   

20.
Post-treatment of thermal spray coatings on magnesium   总被引:1,自引:0,他引:1  
Magnesium alloys have a beneficial combination of high strength to weight ratio, good machinability and high recycling potential. Despite this, the application of magnesium still is behind that of other constructive materials mainly due to low wear and corrosion resistance. For more demanding applications, a large amount of surface treatment methods are developed to overcome this problem. Thermal spraying is an efficient and flexible method of coating deposition and is widely used for protection of different materials against corrosion and wear. Nevertheless, the bonding of thermal spray coatings on magnesium alloys is not sufficient, so the following post-treatment processes are needed. One of such possibilities is high energy beam treatment of thermally sprayed coatings. During the heat treatment of magnesium substrates with coating the remelting of coating and a thin surface layer of substrate occurs. Depending on the combination of applied coating system and treatment method, different processes can be realised in modified layers: the alloying of magnesium substrate with other elements to improve corrosion properties, redistribution of hard particles from composite coating and new phases formation during the processing to improve the wear resistance of magnesium alloys. In the present work some examples concerning the laser and electron beam treatment of aluminium based composite coatings as well as infra red irradiation of zinc based coatings are described. Coatings are deposited on magnesium substrates (AM20, AZ31, AZ91) by arc spraying with Zn, ZnAl4 and ZnAl15 solid wires and cored wires in aluminium core with powder filling containing different hard particles, such as boron, silicon and tungsten carbide or titanium oxide. Remelting of thermal spray coatings is carried out by means of continuous irradiation of СО2-laser in nitrogen or argon atmosphere, electron beam in vacuum and focused tungsten halogen lamp line heater in atmosphere. Microstructure of sprayed coatings as well as that of modified surface layers is investigated by metallographic methods. Corrosion properties are estimated by electrochemical measurements. Abrasion wear resistance of the modified layers is determined by scratch test, corundum grinding disk test and Rubber wheel test. It is shown that all methods applied for processing of thermal spray coatings lead to formation of modified surface layers in magnesium substrate with improved wear and corrosion properties. Different mechanisms of microstructure formation such as redistribution of chemical composition of composite coating components, partial remelting of hard phase particles, and new phases formation are discussed. Electrochemical behaviour of modified surface layers is mostly improved due to alloying, homogenization of element distribution and strong decrease of as-sprayed coating porosity. Abrasion wear resistance of processed magnesium substrates strongly depends on the microstructure and usually is 5 to 20 times higher compared with base material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号