首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
陆胜  罗泽举  刘锬 《机床与液压》2008,36(5):325-327
研究了一种模糊神经网络轧辊磨表面粗糙度智能预测及控制的方法,轧辊磨削精度和表面质量指磨削过程中的加工精度、表面粗糙度和物理机械性能,而表面粗糙度是其中最主要的一个因素.提出的基于模糊神经网络的轧辊磨表面粗糙度智能预测方法对于在轧辊磨削工艺中研究基于模糊神经网络的表面粗糙度预测,对于如何在加工过程中辨识表面粗糙度及时作出砂轮动作的调整,保证轧辊磨削质量有重要意义.同时由于可以实现砂轮表面粗糙度的在线控制与调整,提高了轧辊磨削的生产率.  相似文献   

2.
前言磨削时,工件和砂轮都会被磨除,工件磨除量与砂轮磨损量的比值、称为磨削比G,它能有效地用于度量与磨削成本有关的参数。但是在某种程度上,为了获得和保持稳态的磨削条件,如桓定的磨削力、锐利的砂轮表面和恒定的工件表面粗糙度等,一定的砂轮磨损又是必需的。因此,砂轮磨损的预测对于选择有利的磨削条件是很重要的。本文用磨削过程参数的四  相似文献   

3.
高速磨削砂轮磨损对磨削表面质量的影响研究   总被引:1,自引:0,他引:1  
基于陶瓷CBN砂轮对渗碳钢20Cr Mn Ti开展了高速外圆磨削试验。在外圆磨削余量和工艺参数固定的情况下对工件进行连续磨削,以工件上的磨除体积为砂轮磨损指标,考察了砂轮磨损对工件表面粗糙度、残余应力、表层金相组织和显微硬度变化的影响。实验结果表明工件表面粗糙度会随着砂轮磨损而上升,表面残余应力随着砂轮磨损逐渐呈现拉应力的趋势,磨削表面会出现回火软化变质层。该结果可为进一步研究高速磨削机理及优化工艺参数提供依据。  相似文献   

4.
运用可磨热电偶技术多点测试钛合金磨削表面温度,并基于对TC4钛合金高速外圆磨削温度的测试实验,分析了砂轮线速度、磨削深度及工件速度等工艺参数对工件表面磨削温度的影响机制.揭示了表面磨削温度随着砂轮线速度的提高而上升,以及随磨削深度的增加而升高,随工件速度的提高而下降的变化规律.实验结果可为进一步研究高速磨削机理及优化工艺参数提供依据,从而实现改善工件表面质量、提高加工效率的目的.  相似文献   

5.
本文阐述了激光技术在磨削加工不同方面的应用情况。首先介绍了利用激光对工件表面进行改性处理以改善工件磨削加工性能以及激光辅助磨削硬脆材料的原理和方法。然后通过试验研究,着重阐述了激光在砂轮修锐以及检测砂轮表面形貌两方面的应用。试验结果表明,利用激光扫描方法可快速精确地测量砂轮表面的原始三维形貌,对砂轮工件性能作出客观评定,利用该方法可望实现砂轮形貌的在线检测;利用激光修锐砂轮,不仅可大大降低砂轮损耗,并且能精确控制修税效果,因而是一种很有前途的砂轮修锐方法。  相似文献   

6.
金刚石滚轮修整若干问题的研究(被评为优秀论文) 过去对金刚石滚轮修整的研究仅限于被修砂轮的有效粗糙度,磨削力和被磨工件表面粗  相似文献   

7.
本文以Si3N4工程陶瓷为磨削对象,讨论软弹性修整后金刚石微粉砂轮的磨削力特性及磨削工件表面粗糙度特性,并研究磨削过程中微粉砂轮损耗规律以及工件磨除规律。同时同常规GC杯形砂轮磨削法修整、电火花法修整进行比较。  相似文献   

8.
本文以Si3N4工程陶瓷为磨削对象,讨论软弹性修整后金刚石微粉砂轮的磨削力特性及磨削工件表面粗糙度特性,并研究磨削过程中微粉砂轮损耗规律以及工件磨除规律。同时同常规GC杯形砂轮磨削法修整、电火花法修整进行比较。  相似文献   

9.
钢轨修磨是修复钢轨损伤的主要方式。相比于普通磨削,钢轨修磨对砂轮的磨削加工性能提出了特殊的要求。依据钢轨铣磨车作业工况,设定磨削参数,对不同砂轮进行试验研究,优选符合作业要求的砂轮。试验结果表明:树脂结合剂混合刚玉磨料砂轮耐磨性较好,砂轮的表面有轻微黏附型堵塞;陶瓷结合剂白刚玉大气孔砂轮的磨削效率和耐磨性综合性能较好,砂轮的表面有轻微黏附型堵塞;陶瓷结合剂微晶刚玉砂轮的自锐性好,干磨削效率高,但耐用度极低。   相似文献   

10.
针对目前微电机转子轴无心外圆磨过程中砂轮修整频繁的问题,采用微晶陶瓷刚玉砂轮替代传统刚玉砂轮磨削微电机转子轴。通过搭建平面磨削工艺平台,参考无心磨砂轮修整及其磨削加工参数,从磨削温度、工件表面粗糙度、表面微观形貌、磨削比等方面,对比分析微晶陶瓷刚玉砂轮与传统刚玉砂轮的磨削性能。结果表明:相对传统刚玉砂轮,微晶陶瓷刚玉砂轮不仅有效改善磨削温度(降低38.5%),提高工件表面加工质量(表面粗糙度降低78.6%),还具有较高的砂轮磨削比(提高2.2倍)。选用微晶陶瓷刚玉砂轮对微电机转子轴进行无心磨生产线验证,结果表明:微电机转子轴无心磨样件的各项检测结果均满足实际生产指标要求,且较传统刚玉砂轮延长了1.6倍的修整周期,在提高加工质量的同时,显著提高了生产效率。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号