首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the effects of seven protein kinase inhibitors (staurosporine, genistein, methyl 2,5-dihydroxycinnamate, tyrphostins B44 and B46, lavendustin A and R03) on the erythrocytic cycle of the malaria parasite, Plasmodium falciparum. One (staurosporine) strongly inhibits serine/threonine kinases, but the remainder all exhibit a strong preference for tyrosine kinases. We have been able to discriminate between effects on invasion and on intraerythrocytic development. All reagents impeded development of intraerythrocytic parasites, though at widely differing concentrations, from the sub-micromolar to the millimolar. Several inhibitors, including staurosporine, also reduced invasion. The phosphatase inhibitor, okadaic acid, had a strong inhibitory effect both on invasion and development. The regulation of malaria development by phosphorylation or dephosphorylation reactions at several points in the blood-stage cycle is implied.  相似文献   

2.
Pathogenic Salmonella species initiate infection of a host by inducing their own uptake into intestinal epithelial cells. An invasive phenotype is conferred to this pathogen by a number of proteins that are components of a type III secretion system. During the invasion process, the bacteria utilize this secretion system to release proteins that enter the host cell and apparently interact with unknown host cell components that induce alterations in the actin cytoskeleton. To investigate the role of secreted proteins as direct modulators of invasion, we have evaluated the ability of Salmonella typhimurium to enter mammalian cells that express portions of the Salmonella invasion proteins SipB and SipC. Plasma membrane localization of SipB and SipC was achieved by fusing carboxyl- and amino-terminal portions of each invasion protein to the intracellular carboxyl-terminal tail of a membrane-bound eukaryotic receptor. Expression of receptor chimeras possessing the carboxyl terminus of SipB or the amino terminus of SipC blocked Salmonella invasion, whereas expression of their chimeric counterparts had no effect on invasion. The effect on invasion was specific for Salmonella since the perturbation of uptake was not extended to other invasive bacterial species. These results suggest that Salmonella invasion can be competitively inhibited by preventing the intracellular effects of SipB or SipC. In addition, these experiments provide a model for examining interactions between bacterial invasion proteins and their host cell targets.  相似文献   

3.
Chemopreventive agents: protease inhibitors   总被引:2,自引:0,他引:2  
Certain protease inhibitors, called the anticarcinogenic protease inhibitors in this review, are capable of preventing carcinogenesis in a wide variety of in vivo and in vitro model systems. The anticarcinogenic protease inhibitors are extremely potent agents with the ability to prevent cancer, with some unique characteristics as anticarcinogenic agents. The anticarcinogenic protease inhibitors have the ability to irreversibly suppress the carcinogenic process. They do not have to be continuously present to suppress carcinogenesis. They can be effective when applied in both in vivo and in vitro carcinogenesis assay systems at long time periods after carcinogen exposure, and are effective as anticarcinogenic agents at extremely low molar concentrations. While several different types of protease inhibitors can prevent the carcinogenic process, the most potent of the anticarcinogenic protease inhibitors on a molar basis are those with the ability to inhibit chymotrypsin or chymotrypsin-like proteases. The soybean-derived protease inhibitor, Bowman-Birk inhibitor (BBI), is a potent chymotrypsin inhibitor that has been extensively studied for its ability to prevent carcinogenesis in many different model systems. Much of this review is focused on the characteristics of BBI as the anticarcinogenic protease inhibitor, as this is the protease inhibitor that has risen to the human trial stage as a human cancer chemopreventive agent. Part of this review hypothesizes that the Bowman-Birk family of protease inhibitors plays a role in plants similar to that of alpha1-antichymotrypsin in people. Both BBI and alpha1-antichymotrypsin are potent inhibitors of chymotrypsin and chymotrypsin-like enzymes, are highly anti-inflammatory, and are thought to play important roles in the defense of their respective organisms. It is believed that BBI will be shown to play a major role in the prevention and/or treatment of several different diseases, in addition to cancer.  相似文献   

4.
Protease inhibitors are a new class of drugs which has demonstrated activity for the treatment of HIV infection. The function of the HIV protease is to split a polyprotein to create smaller proteins which will be incorporated in the structure of the virus. The eight cleavage sites of the polyprotein constitute a template for the synthesis of potential inhibitors. Today, only inhibitors of the Phe-Pro cleavage have shown an antiproteinase activity specific for HIV. Clinical trials in HIV infection with saquinavir, indinavir, and ritonavir have demonstrated a decrease in viral load measured by plasma HIV-RNA PCR and an increase in CD4 lymphocyte counts. The use of protease inhibitors leads to a more or less rapid selection of mutant resistant viruses. However, these new drugs, either used alone or in combination, constitute a new therapeutic approach for the treatment of HIV disease.  相似文献   

5.
1. Studies on insect protein protease inhibitors are summarized. Biochemical, genetic and physiological investigations of the silkworm are performed. 2. In addition, the properties and characteristics of fungal protease inhibitors from the silkworm (Bombyx mori) are described and their importance as defensive functions is emphasized. 3. This review also concerns comparative and evolutionary studies of protease inhibitors from various sources. 4. The biological significance of inhibitors is discussed in view of the extensive experimental results.  相似文献   

6.
Local invasion and lymph node metastasis are correlated with a decreased overall survival in head and neck cancer patients and warrant new strategies to intervene in the metastatic cascade. One approach is to focus on the intracellular signaling pathways underlying the metastatic process. A common regulatory point in several signal transduction pathways is intracellular calcium homeostasis. We assessed the effect of a novel calcium influx inhibitor, carboxyamido-triazole (CAI), on the growth and invasive phenotype of cell lines derived from head and neck squamous cell carcinoma (HNSCC). CAI inhibited the growth of FaDu and EVSCC17M cells in a dose-dependent (IC50, 13-15 microM) and reversible manner. CAI also caused a generalized attenuation of receptor-mediated calcium elevation to several calcium mobilization agonists, including epidermal growth factor and bradykinin. The effects of CAI on the invasive phenotype of HNSCC cell lines were assessed by a chemo-invasion assay. HNSCC cell lines exhibited a range of invasive potential as measured by the capacity of tumor cells to penetrate a reconstituted basement membrane of Matrigel. HNSCCs were classified as highly invasive (EVSCC14M and EVSCC17M) or weakly invasive (EVSCC18, EVSCC19M, UMSCC10A, and FaDu). Treatment of HNSCC cell lines with 10 microM CAI for 24 h reduced invasion 2-14-fold in a dose-dependent manner. HNSCCs also exhibited different motilities as measured by a chemotaxis assay. EVSCC14M and EVSCC17M were highly motile, whereas EVSCC18, EVSCC19M, UMSCC10A, and FaDu were less motile. CAI reduced the migration of all cell lines. Conditioned medium from HNSCC cell lines was analyzed by zymography for production of Mr 72,000 type IV collagenase [matrix metalloproteinase (MMP)-2)] and Mr 92,000 type IV collagenase (MMP-9). All HNSCC cell lines secreted MMP-2 and/or MMP-9 into conditioned medium. Treatment of cells with 10 microM CAI for 24 h resulted in a reduction of both MMP-2 and MMP-9 production. The results demonstrate that CAI blocks cellular proliferation, migration, chemoinvasion, and MMP production by HNSCC in vitro and identify calcium-dependent signaling as a new target for inhibition of the malignant phenotype of HNSCC.  相似文献   

7.
This paper is a review of the literature on the possible association between osteoporosis and oral bone loss, with an emphasis on radiological studies. Such an association was first suggested in 1960. Subsequent histomorphometric and microradiographic studies showed that after the age of 50 there was a marked increase in the cortical porosity of the mandible, with this increase being greater in the alveolar bone than the mandibular body; and that with this increase in porosity, there was a concomitant decrease in bone mass, which appeared to be more pronounced in females than in males, with the loss in bone mineral content estimated to be 1.5% per year in females and 0.9% in males. These studies also demonstrated a considerable amount of variation in the amounts of cortical and trabecular bone within and among individuals. Subsequent clinical studies reported associations between the bone densities of jaws and (1) metacarpals, (2) forearm bones, (3) vertebrae and (4) femurs. These studies indicated that women had lower mandibular bone mineral content (BMC) than men and that age-related loss of bone was more pronounced in women after the age of 50 years than in men of the same age, as was the case for the rest of the body. It was suggested that systemic factors responsible for osteoporotic bone loss may combine with local factors (periodontal diseases) to increase rates of periodontal alveolar bone loss. Although not all studies found associations between osteoporosis and oral bone loss, the conclusion of this review is that such an association exists; yet additional longitudinal investigations are needed to confirm this, and before the implications of this association could be fully utilized in clinical dentistry, inexpensive methods must be developed for sensitive and specific measures of oral bone loss.  相似文献   

8.
In this study we investigated the levels of two lysosomal cysteine protease proteins cathepsin B (CB) and cathepsin L (CL) and the levels of three cysteine protease inhibitor proteins stefin A (SFA), stefin B (SFB) and cystatin C (CNC) in squamous-cell lung carcinoma (SQCLC) and matched lung parenchyma specimens and examined the inhibition of CB and cathepsin C (CC) activities by endogenous inhibitors in extracts from SQCLC, lung adenocarcinoma (LAC) and lung parenchyma specimens. We found that Stage I SQCLCs contained significantly increased levels of CB protein, CB activity and SFA protein as compared to matched lungs. Neither the levels of CL protein nor the levels of SFB protein nor the levels of CNC protein in Stage I SQCLCs and the lungs were significantly different, but the levels of CB and CL proteins as well as the levels of SFA and SFB proteins showed significant positive correlation in SQCLCs. In SQCLCs as well as in the lungs the level of SFB protein was significantly higher than the level of SFA protein or the level of CNC protein. In the lungs the levels of SFA protein and CNC protein revealed a weak negative correlation trend. In extracts from SQCLCs the level of SFA protein showed a weak negative correlation with the residual CB activity (i.e. the activity remaining after extract preincubation) whereas in extracts from the lungs the level of CNC protein displayed a weak negative correlation trend with the residual CB activity and with the residual CC activity. We observed that SQCLCs and LACs contained not only a significantly increased activity of CB but also a significantly higher inhibitory potential against the activity of endogenous CB as compared to matched lungs. Leupeptin, a small inhibitor of CB, was capable to protect CB in lung carcinoma and lung parenchyma extracts from preincubation-induced inhibition, revealing an active-site directed and competitive nature of CB inhibition by endogenous cystatins. Ultrafiltration passaged protein preparations of nominal Mr < or = 30,000 obtained from extracts of SQCLCs inhibited significantly higher quantities of activity of purified bovine spleen CC than did such protein preparations from matched lungs. Reaction courses of purified bovine spleen CC that had been preincubated with such protein preparations resembled those of endogenous CC from SQCLC and lung extracts showing a slow steady-state approach. These observations and the relaxation kinetics of CC from SQCLC and lung extracts suggest that CC in the extracts may be complexed with some cystatins. In conclusion, our results indicate that quantitatively different combinations of cystatins are the major constituents of the inhibitory potential against CB and CC in SQCLCs and the lungs.  相似文献   

9.
The development of peptidomimetic inhibitors of the human cytomegalovirus (HCMV) protease showing sub-micromolar potency in an enzymatic assay is described. Selective substitution of the amino acid residues of these inhibitors led to the identification of tripeptide inhibitors showing improvements in inhibitor potency of 27-fold relative to inhibitor 39 based upon the natural tetrapeptide sequence. Small side chains at P1 were well tolerated by this enzyme, a fact consistent with previous observations. The S2 binding pocket of HCMV protease was very permissive, tolerating lipophilic and basic residues. The substitutions tried at P3 indicated that a small increase in inhibitor potency could be realized by the substitution of a tert-leucine residue for valine. Substitutions of the N-terminal capping group did not significantly affect inhibitor potency. Pentafluoroethyl ketones, alpha,alpha-difluoro-beta-keto amides, phosphonates and alpha-keto amides were all effective substitutions for the activated carbonyl component and gave inhibitors which were selective for HCMV protease. A slight increase in potency was observed by lengthening the P1' residue of the alpha-keto amide series of inhibitors. This position also tolerated a variety of groups making this a potential site for future modifications which could modulate the physicochemical properties of these molecules.  相似文献   

10.
Quantitative characterization of the interaction of des-kringle1-5-plasmin (microplasmin) with fibrin(ogen) and plasma protease inhibitors may serve as a tool for further evaluation of the role of kringle domains in the regulation of fibrinolysis. Comparison of fibrin(ogen) degradation products yielded by plasmin, miniplasmin (des-kringle1-4-plasmin), microplasmin, and trypsin on SDS gel electrophoresis indicates that the differences in the enzyme structure result in different rates of product formation, whereas the products of the four proteases are very similar in molecular weight. Kinetic parameters show that plasmin is the most efficient enzyme in fibrinogen degradation, and the kcat/KM ratio decreases in parallel with the loss of the kringle domains. The catalytic sites of the four proteases have similar affinities for fibrin (KM values between 0.12 and 0.21 microM). Trypsin has the highest catalytic constant for fibrin digestion (kcat = 0.47 s-1), and among plasmins with different kringle structures, the loss of kringle5 results in a markedly lower catalytic rate constant (kcat = 0.0076 s-1 for microplasmin vs 0.048 s-1 for miniplasmin and 0.064 s-1 for plasmin). In addition, microplasmin is inactivated by plasmin inhibitor (k" = 3.9 x 10(5) M-1 s-1) and antithrombin (k" = 1.4 x 10(3) M-1 s-1) and the rate of inactivation decreases in the presence of fibrin(ogen). Heparin (250 nM) accelerates the inactivation of microplasmin by antithrombin (k" = 10.5 x 10(3) M-1 s-1 ), whereas that by plasmin inhibitor is not affected (k" = 4.2 x 10(5) M-1 s-1).  相似文献   

11.
Human prostatic epithelial cells constitutively secrete prostate-specific antigen (PSA), a kallikrein-like serine protease, which is a normal component of the seminal plasma. PSA is currently used as a specific diagnostic marker for the early detection of prostate cancer. We demonstrate that PSA degrades extracellular matrix glycoproteins fibronectin and laminin and, thus, may facilitate invasion by prostate cancer cells. Blocking PSA proteolytic activity with PSA-specific mAb results in a dose-dependent decrease in vitro in the invasion of the reconstituted basement membrane Matrigel by LNCaP human prostate carcinoma cells which secrete high levels of PSA. A novel PSA-SDS-PAGE zymography method for the detection of matrix degrading ability of PSA is also described. We propose that: (a) because of the dysplastic cellular disorganization in early neoplastic lesions called prostatic intraepithelial neoplasia (PIN), PSA may be secreted not only at the luminal end but also, abnormally, at the cell-basement membrane interface, causing matrix degradation and facilitating invasion; and (b) PSA, along with urokinase, another serine protease secreted by prostatic epithelium, may be involved in the proteolytic cascade during prostate cancer invasion and metastasis. The discovery of the extracellular matrix degrading ability of PSA not only makes it a marker for early detection but also a target for prevention and intervention in prostate cancer.  相似文献   

12.
13.
14.
Reduction or loss of the intercellular junctions known as desmosomes may contribute to the invasive and metastatic behaviour of various carcinomas. Previous studies have shown that metastasis of oral squamous cell carcinomas of the head and neck correlates with a reduction in immunohistochemical staining for desmoplakin and desmoglein at the invasion front. The primary aim of the present study was to extend these observations to include a third component of desmosomes, the glycoprotein desmocollin. An additional aim was to determine whether the differentiation status of tumours is reflected in their staining for cytokeratins 1, 13, and 19, and, if so, whether these parameters correlate with desmosomal staining and/or metastasis. The study included 54 primary tumours of which 28 showed lymph node metastases. The results of this investigation show that tumours can be divided into three groups according to whether they have lost staining for no, one or more than one desmosomal component. A statistically significant correlation was found between the number of desmosomal components lost and metastasis. Tumours could also be divided into five groups according to their staining for different combinations of cytokeratins. Furthermore, differentiation status as indicated both histologically and by cytokeratin staining correlated with reduced desmosomal staining and metastasis. Tumours were also examined for intensity of staining for the adhesion molecule E-cadherin. Reduction in E-cadherin staining was correlated with mode of invasion and with reduction in desmosomal staining, but not with poor differentiation as indicated by cytokeratin staining. The results of this extensive study reinforce the view that adhesive junctions and adhesion molecules contribute to the suppression of tumour invasion and metastasis.  相似文献   

15.
16.
17.
In oral carcinomas close to the mandible, tumour invasion of the mandible is important in selecting segmental or marginal resection. Imaging may play a role in assessing tumour invasion. This study compares the accuracy of panoramic X-ray, CT and MR imaging in assessing invasion of the mandible in 29 patients. At histopathology, 6 patients had mandible erosion, 12 had invasion and 11 had an intact mandible. Magnetic resonance imaging had the highest sensitivity (94%), but a low specificity (73%), with 3 of 11 intact mandibles interpreted as positive. Furthermore, MR often overestimated the extent of tumour invasion. On the other hand, CT and panoramic X-ray had a lower sensitivity (64 and 63%, respectively) and a higher specificity (89 and 90%, respectively). Computed tomography (using 5-mm sections) and panoramic X-ray had a similar accuracy, and negative findings do not exclude invasion. Magnetic resonance imaging was the most sensitive technique but had more false positives and frequently overestimated the extent of tumour invasion. Because none of the radiological techniques are accurate enough, clinical examination seems at present to remain the most important modality in deciding between segmental and marginal resection. Tumour invasion at CT or panoramic X-ray is a strong argument for a segmental resection.  相似文献   

18.
This study evaluated the inhibitory effects of thiazolidine derivatives on hepatitis C virus (HCV) protease and other human serine proteases. The inhibition efficacy was tested with a reversed-phase high-performance liquid chromatography (HPLC) assay system using a NS3-NS4A fusion protein as the HCV protease and a synthetic peptide substrate that mimics the NS5A-5B junction. Nine thiazolidine derivatives showed more than 50% inhibition at 50 microg/ml. The most potent derivative was RD4-6250, with 50% inhibition at a concentration of 2.3 microg/ml; this concentration was lower than those of other protease inhibitors reported previously. The most selective derivative was RD4-6205, with 50% inhibition at a concentration of 6.4 microg/ml, a lower concentration than those on other serine proteases (chymotrypsin, trypsin, plasmin, and elastase). These results suggest that the RD4-6205 skeleton is an important structure for inhibitory activity on the HCV protease NS3-NS4A.  相似文献   

19.
Urinary trypsin inhibitor (UTI) has a multipotent inhibitory effect on proteases such as trypsin, chymotrypsin, plasmin, human leukocyte elastase, or hyaluronidase. UTI can bind easily to its receptors on various types of tumor cells (human ovarian cancer HOC-I cells, human choriocarcinoma SMT-cc1 cells, and murine Lewis lung carcinoma 3LL cells). Our results show that the UTI receptors of some tumor cells have a possible role in modulating plasmin activity on the cell surface and prevention of tumor cell invasion and metastasis (H. Kobayashi et al., J. Biol. Chem., 269; 20642-20647, 1994). UTI interacts with tumor cells as a negative modulator of the invasive cells. We investigated whether this effect may be mediated by UTI binding to the cell surface receptors. In addition, the role of peptide sequences from each UTI domain and their interaction with tumor cells were investigated. UTI derivatized with biotin or FITC was taken up by tumor cells in a dose-dependent manner. This cell association was inhibited with a monoclonal antibody D1, which specifically recognizes NH2 terminus (domain I) of UTI. The binding was inhibited by fluid phase UTI, but not HI-8, COOH terminus (domain II) of UTI, suggesting that UTI binds to cells through a site in the UTI domain I. Furthermore, we found that UTI, HI-8 and a number of peptides containing Arg-Gly-Pro-Cys-Arg-Ala-Phe-Ile promoted the inhibition of tumor cell invasion. This site corresponds to the plasmin-inhibiting domain within HI-8. The possibility that UTI binding to tumor cells might be involved in the prevention of tumor cell invasion in vitro was excluded since HI-8, lacking domain I, promotes the inhibition of tumor cell invasion with essentially the same affinity as UTI. All these data allow us to conclude that inhibition of tumor cell invasion is mediated by domain II, which possesses anti-plasmin activity.  相似文献   

20.
Studies with peptide-based and macromolecular inhibitors of the caspase family of cysteine proteases have helped to define a central role for these enzymes in inflammation and mammalian apoptosis. A clear interpretation of these studies has been compromised by an incomplete understanding of the selectivity of these molecules. Here we describe the selectivity of several peptide-based inhibitors and the coxpox serpin CrmA against 10 human caspases. The peptide aldehydes that were examined (Ac-WEHD-CHO, Ac-DEVD-CHO, Ac-YVAD-CHO, t-butoxycarbonyl-IETD-CHO, and t-butoxycarbonyl-AEVD-CHO) included several that contain the optimal tetrapeptide recognition motif for various caspases. These aldehydes display a wide range of selectivities and potencies against these enzymes, with dissociation constants ranging from 75 pM to >10 microM. The halomethyl ketone benzyloxycarbonyl-VAD fluoromethyl ketone is a broad specificity irreversible caspase inhibitor, with second-order inactivation rates that range from 2.9 x 10(2) M-1 s-1 for caspase-2 to 2.8 x 10(5) M-1 s-1 for caspase-1. The results obtained with peptide-based inhibitors are in accord with those predicted from the substrate specificity studies described earlier. The cowpox serpin CrmA is a potent (Ki < 20 nM) and selective inhibitor of Group I caspases (caspase-1, -4, and -5) and most Group III caspases (caspase-8, -9, and -10), suggesting that this virus facilitates infection through inhibition of both apoptosis and the host inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号