首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electrical-discharge machining (EDM) of advanced ceramics allows the miniaturization of parts with complex shapes. Since electrical conductivity is required, non-conductive ceramics need a conductive second phase. This work assesses the feasibility of industrial EDM in advanced yttria-stabilized tetragonal zirconia (3YTZP) composites with 20 vol% graphene nanostructures with different morphology using different EDM energies. The structural integrity of the graphene nanostructures, the roughness of the machined surfaces and the geometrical tolerances have been evaluated by Raman spectroscopy, confocal microscopy and scanning electron microscopy, showing that it is possible to obtain a stable and efficient EDM process in these composites using low electrode energies. The use of the largest and thickest graphene nanostructures led to the best performance in terms of EDM machinability, the smallest nanostructures produced the best surface finish for low electrode energy and the thinnest nanostructures allowed the highest material removal rate at medium energy in the composites.  相似文献   

2.
Niobium oxide thin films were deposited on the glass and fluorine doped tin oxide (FTO) coated glass substrates using simple and inexpensive spray pyrolysis technique. During deposition of the films various process parameters like nozzle to substrate distance, spray rate, concentration of sprayed solution were optimized to obtain well adherent and transparent films. The films prepared were further annealed and effect of post annealing on the structural, morphological, optical and electrochromic properties was studied. Structural and morphological characterizations of the films were carried out using scanning electron microscopy, atomic force microscopy and X-ray diffraction techniques. Electrochemical properties of the niobium oxide thin films were studied by using cyclic-voltammetry, chronoamperometry and chronocoulometry.  相似文献   

3.
In situ scanning tunneling microscopy (STM) and reflection high energy electron diffraction (RHEED) were used to characterize mercury film electrodeposited onto a Pt(1 1 1) electrode at room temperature. Depending on the amount of Hg deposit, two different growth modes were observed. At low Hg coverage, crystalline (0 0 0 1)Hg adlayer accompanied by 30°-rotated (1 1 1)-Pt patches was found on Pt(1 1 1). Deposition of multilayer Hg resulted in layered PtHg2 and PtHg4 amalgams, which grew epitaxially by aligning their (2 0 1) and planes, respectively, parallel to the Pt(1 1 1) substrate. The preference of these epitaxial relationships for the electrochemically formed Pt-Hg intermetallic compounds on Pt(1 1 1) could result from minimization of the surface energy.  相似文献   

4.
《Ceramics International》2023,49(1):882-893
The advent of inkjet printing as digital decoration of ceramic materials has irreversibly modified the industrial decoration technology, imposing companies to change the colorant production process. The inkjet application requires micronized particles in the ultrafine particle size range (smaller than 1 μm). Particles size reduction of ceramic colorants is performed by a high-energy comminution process in wet-operated bead mills, affecting colorants properties. Since a deep knowledge of milling-induced microstructural changes is still lacking, the micronization effects on a set of five industrial ceramic colorants are thoughtfully investigated in this work by simulating the industrial process at a pilot plant. Particle size distribution and energy consumption are monitored during the comminution process. The compositional (including crystallite size and microstrain analysis of the main phases) and morphological variation of four ceramic pigments (yellow zircon, brown spinel, pink malayaite, and green eskolaite) and one dye (blue olivine) is investigated by XRPD (Rietveld method) and SEM analyses. The analytical approach combined with a physical/semiempirical modelling of the colorants elastic features versus the energy demand for particle reduction has yielded details on the nature of the micronization-induced microstructural changes in ceramic colorants. Specifically, the comminution efficiency as well as the crystalline phase stability are related to the intrinsic properties of each colorant. Brittle breakage rather than plastic deformation on comminution are also system dependent. When an euhedral to subhedral crystal habit is maintained a brittle fracture is preserved throughout the comminution progress, while the formation of flake-like particles and particle agglomeration are strong evidences of plastic deformation. The last evidence deals with the material elastic features. Materials with high bulk modulus convert the grinding energy to lattice defects that lead to particle breakage by brittle fractures, while materials with lower bulk modulus convert/dissipate part of the supplied energy in plastic deformations, drastically decreasing the comminution process efficiency.  相似文献   

5.
The steady-state oxidation of CO on clean Rh(100) at low pressures has been investigated using in-situ infrared spectroscopy and mass spectrometry. The results show that at a fixed CO pressure, the temperature at which the CO2 formation rate maximizes decreases as a function of increasing O2 pressure. Vibrational data indicate that this maximum rate coincides with a CO coverage of less than 0.01 monolayers.  相似文献   

6.
Co-containing NO x storage and reduction catalysts were investigated to identify the mechanism of Co promotion. X-ray diffraction and temperature programmed reduction demonstrated that Co exists in a highly oxidized state (Co3O4) and that the surface oxygen could be removed from the catalyst a typical operating conditions around 300 °C. Electron microscopy showed that Co is more uniformly distributed over the catalyst surface, as compared to Pt, with particle sizes ranging between 20 and 80 nm. In situ IR studies illustrated that NO x storage occurs on Co-containing NSR catalyst via formation of nitrites and nitrates as surface intermediates. Finally, it was found that, similar to Pt, the addition of Co to Ba catalysts enhances the nitrite to nitrate transition rate and also increases the overall formation of nitrates. Therefore, the promotional effect shown by Co is the result of the combination of increased NO to NO2 oxidation and improved surface area for NO2 spillover to the Ba storage sites.  相似文献   

7.
This paper briefly summarizes our recent work on the characterization of atom-resolved surface images of TiO2(110) composed of Ti atoms, O atoms, defects and hydroxyls by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (NC-AFM). The paper also presents new kinetic aspects in the catalytic dehydration and dehydrogenation of formic acid on the characterized surface. Switchover of the reaction path from the dehydration to the dehydrogenation occurred by the presence of formic acid undetectable at the surface, where acidic formic acid molecules opened the basic catalysis. In situ STM observation revealed that the dehydrogenation reaction at 400–450 K was strongly suppressed in the vicinity of single-atom height steps. The suppressive effect of step ranged over 2.4 nm into terrace. It is likely that the catalyst with flat surfaces larger than 5 nm is active for the dehydrogenation of formic acid.  相似文献   

8.
Poly(vinyl chloride) plastisol-based foams were prepared with epoxidized soybean oil and residual low cost fillers. Microstructural characterizations using scanning electron microscopy were carried out to understand the microcellular morphology. Absence of epoxy groups in Fourier transform infrared spectroscopy spectra of epoxidized soybean oil-modified–poly(vinyl chloride) plastisol foams indicated the occurrence of ring opening reaction between poly(vinyl chloride) plastisol and epoxidized soybean oil, signifying epoxidized soybean oil’s role as HCl scavenger. X-ray diffraction study indicated increased crystallinity of filler modified poly(vinyl chloride) plastisol/epoxidized soybean oil foams, suggesting their role as possible nucleating agents. Foams with fillers also showed reduced water uptake, which were in good agreement with other characterizations.  相似文献   

9.
Patterned copper sulfide (CuxS) microstructures on Si (1 1 1) wafers were successfully fabricated by a relatively simple solution growth method using copper sulfate, ethylenediaminetetraacetate and sodium thiosulfate aqueous solutions as precursors. The CuxS particles were selectively deposited on a patterned self-assembled monolayer of 3-aminopropyltriethoxysilane regions created by photolithography. To obtain high quality CuxS films, preparative conditions such as concentration, proportion, pH and temperature of the precursor solutions were optimized. Various techniques such as optical microscopy, atomic force microscopy (AFM), X-ray diffraction, optical absorption and scanning electrochemical microscopy (SECM) were employed to examine the topography and properties of the micro-patterned CuxS films. Optical microscopy and AFM results indicated that the CuxS micro-pattern possessed high selectivity and clear edge resolution. From combined X-ray diffraction analysis and optical band gap calculations we conclude that Cu9S5 (digenite) was the main phase within the resultant CuxS film. Both SECM image and cyclic voltammograms confirmed that the CuxS film had good electrical conductivity. Moreover, from SECM approach curve analysis, the apparent electron-transfer rate constant (k) in the micro-pattern of CuxS dominated surface was estimated as 0.04 cm/s. The SECM current map showed high edge acuity of the micro-patterned CuxS.  相似文献   

10.
Chang-An Yang 《Polymer》2010,51(20):4503-4510
A series of new monomers of 2, 5-bis [(3, 4, 5-trialkoxy benzyl) oxycarbonyl] styrene (denoted as M-tri-OCmH2m 1, m = 1, 2, 4, 6, 8, 10, 12, where m indicated the number of carbon atoms in the alkoxy group) were designed and synthesized. Then, their corresponding polymers P-tri-OCmH2m + 1 (m = 1, 2, 4, 6, 8, 10, 12) were synthesized by free radical polymerization. The chemical structure of the monomers was confirmed by elemental analysis, 1H NMR and 13C NMR. The molecular characterization of polymers was performed with 1H NMR, gel permeation chromatography (GPC). The thermal stability of polymers was investigated by thermogravimetric analysis (TGA). The phase structure and transition behaviours were studied using differential scanning calorimetry (DSC), polarized light microscopy (PLM), one- and two-dimensional (1D and 2D) wide-angle X-ray diffraction (WAXD). We found that P-tri-OCmH2m + 1 (m = 1, 2) with short n-alkoxy substituents as the tail form columnar nematic (ΦN) phase; that with the increasing length of alkoxy tails, P-tri-OCmH2m + 1 (m = 4, 6, 8) can demonstrate the hexagonal columnar (ΦH) phase; however, when the length of alkoxy tails exceeded a threshold, P-tri-OCmH2m + 1 (m = 10, 12) only develop into columnar nematic (ΦN) phase instead of ΦH phase.  相似文献   

11.
Emulsification is used to generate spherical particles or droplets of immiscible liquids, while block copolymer self-assembly yields a wide variety of nanostructures. The combination of these two methodologies can yield a variety of structures that would not be otherwise observed. The emulsification/solvent evaporation process provides a powerful means to direct block copolymer assembly. Various factors arising from the emulsification can direct the block copolymer assembly, such as confinement effects, interfacial tension, as well as other conditions. In this review, various emulsification techniques are discussed, such as oil-in-water emulsions, double emulsions, as well as the use of microfluidic devices. While emulsification-induced self-assembly may be used to control internal morphologies as well as overall shapes of particles, it also lends a convenient method for controlling surface structures. Examples of exotic structures that may be obtained through the use of these techniques will be described. Also, ways in which morphologies may be controlled using these methods will be discussed.  相似文献   

12.
The oxidation of ammonia to nitrogen or nitric oxide was investigated using on the one hand a polycrystalline copper foil and on the other hand deposited copper clusters prepared with the inert gas aggregation technique. The behavior in the oxidation of ammonia of both model catalysts was studied using in situ near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range and mass spectrometry. It is shown that the copper foil reacts in a similar way to the copper clusters. Differences appear only with respect to the reaction temperature required, which is lower for the cluster sample. It can be concluded that the results obtained in experiments with polycrystalline copper foil are exemplary for and can be transferred to a supported copper catalyst consisting of small copper particles.  相似文献   

13.
The oxidation of ammonia over polycrystalline copper was investigated by means of in situ NEXAFS (near-edge X-ray absorption fine structure) spectroscopy in the soft X-ray range. The reaction, carried out in a 1:12 excess of oxygen, was observed by mass spectrometry. The simultaneous detection of the surface electronic structure and its catalytic performance allows correlation of different reaction products to the current surface structure of the catalyst. It is shown that a change in total pressure from 0.4 to 1.2 mbar severely affects the reaction path. Copper(I) nitride was identified as poison and a copper oxide was found to be the active phase for the selective oxidation of ammonia to nitrogen.  相似文献   

14.
The Cu2ZnSnS4 (CZTS) thin films have been electrodeposited onto the Mo coated and ITO glass substrates, in potentiostatic mode at room temperature. The deposition mechanism of the CZTS thin film has been studied using electrochemical techniques like cyclic voltammetery. For the synthesis of these CZTS films, tri-sodium citrate and tartaric acid were used as complexing agents in precursor solution. The structural, morphological, compositional, and optical properties of the CZTS thin films have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAX and optical absorption techniques respectively. These properties are found to be strongly dependent on the post-annealing treatment. The polycrystalline CZTS thin films with kieserite crystal structure have been obtained after annealing as-deposited thin films at 550 in Ar atmosphere for 1 h. The electrosynthesized CZTS film exhibits a quite smooth, uniform and dense topography. EDAX study reveals that the deposited thin films are nearly stoichiometric. The direct band gap energy for the CZTS thin films is found to be about 1.50 eV. The photoelectrochemical (PEC) characterization showed that the annealed CZTS thin films are photoactive.  相似文献   

15.
Controlled accommodation of metal nanostructures (MNSs) into the matrix of a well-defined polymer architecture offers an effective approach to achieve hierarchically structured nanocomposites with tunable synergistic properties to broaden application potentials in the emerging fields of energy, environmental science, and medicine. This review focuses on the recently developed zero-dimensional and one-dimensional MNSs@polymer hybrid nanostructures obtained by solution-based synthetic strategies. Progress in the controlled synthesis of those hybrid nanostructures in terms of the number (e.g., monomer, dimer and trimer), organization manner (e.g., linear alignment or confined assembly in certain domains), and spatial arrangement (e.g., in the core and shell) of the MNSs within the distinct polymer matrices are detailed. The synergistic properties and potential applications of those MNSs@polymer hybrids associated with their compositions and morphologies are also reviewed.  相似文献   

16.
Polyacrylonitrile (PAN), a well-known polymer with good stability and mechanical properties, has been widely used in producing carbon nanofibers (CNFs) as these have attracted much recent attention due to their excellent characteristics, such as spinnability, environmentally benign nature and commercial viability. Among the various precursors to produce CNFs, PAN has been extensively studied due to its high carbon yield and flexibility for tailoring the structure of the final CNFs as well as the ease of obtaining stabilized products due to the formation of a ladder structure via nitrile polymerization. In view of this, they have applications in areas such as electronics, tissue engineering, membrane filtration and high performance composites. This review presents various combinations of PAN and PAN-based precursors in producing CNFs from the PAN homopolymer or its modified precursors, copolymers, blends and various composites. Various modifications of PAN and their future prospects in different scientific and technological disciplines are addressed.  相似文献   

17.
Results of the comprehensive characterisation of electro-exploded aluminum nanopowders, passivated with the non-inert reagents: oleic acid (C17H33COOH) and stearic acid (C17H35COOH), which were suspended in kerosene and ethanol, amorphous boron, nickel, fluoropolymer and Al2O3 (for a comparison), are discussed. Aluminum nanopowders with a protecting surface show increased stability towards oxidation in air and in water during the storage period. On the basis of the experimental results, a diagram of the formation and stabilization of the coatings is proposed.  相似文献   

18.
19.
Response to external stimuli is a fundamental and intrinsic behavior of living systems. There has been increasing interest for designing and constructing responsive polymeric superstructures by self-assembly. Stimuli-induced self-assembly and post-assembly triggering strategies provide an alternative approach for the manipulation of self-assembled architectures of either biological or synthetic polymeric materials. Stimuli-induced structural transformations may produce ensembles with new topologies or materials with exceptionally complex features inaccessible via conventional self-assembly processes. This is in contrast to materials that simply undergo stimuli-induced degradation, or disassembly processes. Since a variety of cellular processes depend on responses to environmental stimuli that lead to more complexity and increased function, and are related to structural transitions over the nano- to microscale, insights into stimuli-triggered morphogenesis can further deepen our understanding of cellular behaviors. Indeed, an understanding of these processes will likely inspire scientists to develop materials with advanced and tailored architectures for biosensing, diagnosis and therapy as well as other biomedical applications. Herein, we highlight state-of-the-art achievements in the stimuli-triggered structural manipulation of polymer assemblies. Furthermore, future developments in this nascent and growing field are briefly discussed.  相似文献   

20.
Layered silicate clays are natural crystallites that are well recognized for their practical uses, but little is known about their self-assembly behavior. In this review, we summarize the recent literature on clay interactions with organic polymers as well as clay self-assembly with organic involvement. We place emphasis on two aspects of these non-covalent interactions: first, plate-like clays can have a considerable impact on polymer properties such as hydrogels and clay films, and also on the encapsulation of bio-molecules. Second, through ionic intercalation with polymeric amine-salts, the clay layered structure units can be modified and enabled to self-assemble into ordered arrays such as rod-, dendrite-, and fiber-like microstructures. The silicate self-assembled morphologies such as worm-like and hollow microspheres were obtained in epoxy matrices and during spray drying, respectively. A mechanism was proposed for the clay self-assembly in two orientations, platelet face-to-face (ionic attraction) and edge-to-edge (organic hydrophobic effect). Further, the layered clays after the exfoliation into random platelets (1 nm in thickness) had strong propensity toward self-piling without any organic influence. Formation of lengthy rods or fibrils up to 5 μm in length and their hierarchical transformation under transmission electron microscope (TEM) electron beam bombardment and ultrasonication were observed. The clay thin-platelet geometric shape and surface ionic charge are two important parameters for the self-assembling tendency. The high surface of clay platelet has a significant impact on polymer interactions and drives the self-organization of inorganic-organic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号