首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetP be a triangulated simple polygon withn sides. The visibility graph ofP has an edge between every pair of polygon vertices that can be connected by an open segment in the interior ofP. We describe an algorithm that finds the visibility graph ofP inO(m) time, wherem is the number of edges in the visibility graph. Becausem can be as small asO(n), the algorithm improves on the more general visibility algorithms of Asanoet al. [AAGHI] and Welzl [W], which take Θ(n 2) time, and on Suri'sO(m logn) visibility graph algorithm for simple polygons [S].  相似文献   

2.
We present efficient algorithms for solving several fundamental graph-theoretic problems on a Linear Array with a Reconfigurable Pipelined Bus System (LARPBS), one of the recently proposed models of computation based on optical buses. Our algorithms include finding connected components, minimum spanning forest, biconnected components, bridges and articulation points for an undirected graph. We compute the connected components and minimum spanning forest of a graph in O(log n) time using O(m+n) processors where m and n are the number of edges and vertices in the graph and m=O(n 2) for a dense graph. Both the processor and time complexities of these two algorithms match the complexities of algorithms on the Arbitrary and Priority CRCW PRAM models which are two of the strongest PRAM models. The algorithms for these two problems published by Li et al. [7] have been considered to be the most efficient on the LARPBS model till now. Their algorithm [7] for these two problems require O(log n) time and O(n 3/log n) processors. Hence, our algorithms have the same time complexity but require less processors. Our algorithms for computing biconnected components, bridges and articulation points of a graph run in O(log n) time on an LARPBS with O(n 2) processors. No previous algorithm was known for these latter problems on the LARPBS.  相似文献   

3.
Presented in this paper is a sweepline algorithm to compute the Voronoi diagram of a set of circles in a two-dimensional Euclidean space. The radii of the circles are non-negative and not necessarily equal. It is allowed that circles intersect each other, and a circle contains others.The proposed algorithm constructs the correct Voronoi diagram as a sweepline moves on the plane from top to bottom. While moving on the plane, the sweepline stops only at certain event points where the topology changes occur for the Voronoi diagram being constructed.The worst-case time complexity of the proposed algorithm is O((n+m)log n), where n is the number of input circles, and m is the number of intersection points among circles. As m can be O(n2), the presented algorithm is optimal with O(n2 log n) worst-case time complexity.  相似文献   

4.
We extend the results of straight-edged computational geometry into the curved world by defining a pair of new geometric objects, thesplinegon and thesplinehedron, as curved generalizations of the polygon and polyhedron. We identify three distinct techniques for extending polygon algorithms to splinegons: the carrier polygon approach, the bounding polygon approach, and the direct approach. By these methods, large groups of algorithms for polygons can be extended as a class to encompass these new objects. In general, if the original polygon algorithm has time complexityO(f(n)), the comparable splinegon algorithm has time complexity at worstO(Kf(n)) whereK represents a constant number of calls to members of a set of primitive procedures on individual curved edges. These techniques also apply to splinehedra. In addition to presenting the general methods, we state and prove a series of specific theorems. Problem areas include convex hull computation, diameter computation, intersection detection and computation, kernel computation, monotonicity testing, and monotone decomposition, among others.  相似文献   

5.
Consider a collection of disjoint polygons in the plane containing a total ofn edges. We show how to build, inO(n 2) time and space, a data structure from which inO(n) time we can compute the visibility polygon of a given point with respect to the polygon collection. As an application of this structure, the visibility graph of the given polygons can be constructed inO(n 2) time and space. This implies that the shortest path that connects two points in the plane and avoids the polygons in our collection can be computed inO(n 2) time, improving earlierO(n 2 logn) results.  相似文献   

6.
In this paper, we present optimal O(log n) time, O(n/log n) processor EREW PRAM parallel algorithms for finding the connected components, cut vertices, and bridges of a permutation graph. We also present an O(log n) time, O(n) processor, CREW PRAM model parallel algorithm for finding a Breadth First Search (BFS) spanning tree of a permutation graph rooted at vertex 1 and use the same to derive an efficient parallel algorithm for the All Pairs Shortest Path problem on permutation graphs.  相似文献   

7.
The maximum weight matching problem is a fundamental problem in graph theory with a variety of important applications. Recently Manne and Mjelde presented the first self-stabilizing algorithm computing a 2-approximation of the optimal solution. They established that their algorithm stabilizes after O(2n) (resp. O(3n)) moves under a central (resp. distributed) scheduler. This paper contributes a new analysis, improving these bounds considerably. In particular it is shown that the algorithm stabilizes after O(nm) moves under the central scheduler and that a modified version of the algorithm also stabilizes after O(nm) moves under the distributed scheduler. The paper presents a new proof technique based on graph reduction for analyzing the complexity of self-stabilizing algorithms.  相似文献   

8.
This paper considers the problem of investigating the spherical regions owned by the maximum number of spherical polygons. We present a practical O(n(v+I)) time algorithm for finding the approximating centroids for the maximum intersection of spherical polygons, where n, v, and I are, respectively, the numbers of polygons, all vertices, and intersection points. In order to elude topological errors and handle geometric degeneracies, our algorithm takes the approach of edge-based partitioning of the sphere. Furthermore, the numerical complexity is avoided since the algorithm is completely spherical.  相似文献   

9.
We present an algorithm for finding optimum partitions of simple monotone rectilinear polygons into star-shaped polygons. The algorithm may introduce Steiner points and its time complexity isO(n), wheren is the number of vertices in the polygon. We then use this algorithm to obtain anO(n logn) approximation algorithm for partitioning simple rectilinear polygons into star-shaped polygons with the size of the partition being at most six times the optimum.  相似文献   

10.
In this paper a general technique for reducing processors in simulation without any increase in time is described. This results in an O(√logn) time algorithm for simulating one step of PRIORITY on TOLERANT with processor-time product of O(n log logn); the same as that for simulating PRIORITY on ARBITRARY. This is used to obtain anO(logn/log logn + √logn (log logm ? log logn)) time algorithm for sortingn integers from the set {0,...,m ? 1},mn, with a processor-time product ofO(n log logm log logn) on a TOLERANT CRCW PRAM. New upper and lower bounds for ordered chaining problem on an allocated COMMON CRCW model are also obtained. The algorithm for ordered chaining takesO(logn/log logn) time on an allocated PRAM of sizen. It is shown that this result is best possible (upto a constant multiplicative factor) by obtaining a lower bound of Ω(r logn/(logr + log logn)) for finding the first (leftmost one) live processor on an allocated-COMMON PRAM of sizen ofr-slow virtual processors (one processor simulatesr processors of allocated PRAM). As a result, for ordered chaining problem, “processor-time product” has to be at least Ω(n logn/log logn) for any poly-logarithmic time algorithm. Algorithm for ordered-chaining problem results in anO(logN/log logN) time algorithm for (stable) sorting ofn integers from the set {0,...,m ? 1} withn-processors on a COMMON CRCW PRAM; hereN = max(n, m). In particular if,m =n O(1), then sorting takes Θ(logn/log logn) time on both TOLERANT and COMMON CRCW PRAMs. Processor-time product for TOLERANT isO(n(log logn)2). Algorithm for COMMON usesn processors.  相似文献   

11.
An optimal visibility graph algorithm for triangulated simple polygons   总被引:2,自引:0,他引:2  
LetP be a triangulated simple polygon withn sides. The visibility graph ofP has an edge between every pair of polygon vertices that can be connected by an open segment in the interior ofP. We describe an algorithm that finds the visibility graph ofP inO(m) time, wherem is the number of edges in the visibility graph. Becausem can be as small asO(n), the algorithm improves on the more general visibility algorithms of Asanoet al. [AAGHI] and Welzl [W], which take (n 2) time, and on Suri'sO(m logn) visibility graph algorithm for simple polygons [S].This work was supported in part by a U.S. Army Research Office fellowship under agreement DAAG29-83-G-0020.  相似文献   

12.
13.
This paper presents new algorithms for solving some geometric problems on a shared memory parallel computer, where concurrent reads are allowed but no two processors can simultaneously attempt to write in the same memory location. The algorithms are quite different from known sequential algorithms, and are based on the use of a new parallel divide-and-conquer technique. One of our results is an O(log n) time, O(n) processor algorithm for the convex hull problem. Another result is an O(log n log log n) time, O(n) processor algorithm for the problem of selecting a closest pair of points among n input points.  相似文献   

14.
Consider a collection of disjoint polygons in the plane containing a total ofn edges. We show how to build, inO(n 2) time and space, a data structure from which inO(n) time we can compute the visibility polygon of a given point with respect to the polygon collection. As an application of this structure, the visibility graph of the given polygons can be constructed inO(n 2) time and space. This implies that the shortest path that connects two points in the plane and avoids the polygons in our collection can be computed inO(n 2) time, improving earlierO(n 2 logn) results.  相似文献   

15.
We consider the problem of finding a shortest watchman route from which the exterior of a polygon is visible (external watchman route). We present an O (n 4 log logn) algorithm to find shortest external watchman routes for simple polygons by transforming the external watchman route problem to a set of internal watchman route problems. Also, we present faster external watchman route algorithms for special cases. These include optimal O (n) algorithms for convex, monotone, star and spiral polygons and an O (n log logn) algorithm for rectilinear polygons.This work was supported in part by a grant from Texas Instruments, Inc. to S. Ntafos  相似文献   

16.
An algorithm for computing the maximum area empty isothetic orthoconvex polygon among a set of n points on a 2D rectangular region, is presented. The worst-case time and space complexities of the proposed algorithm are O(n3) and O(n2) respectively.  相似文献   

17.
We investigate the complexity of merging sequences of small integers on the EREW PRAM. Our most surprising result is that two sorted sequences ofn bits each can be merged inO(log logn) time. More generally, we describe an algorithm to merge two sorted sequences ofn integers drawn from the set {0, ...,m?1} inO(log logn+log min{n, m}) time with an optimal time-processor product. No sublogarithmic-time merging algorithm for this model of computation was previously known. On the other hand, we show a lower bound of Ω(log min{n, m}) on the time needed to merge two sorted sequences of lengthn each with elements drawn from the set {0, ...,m?1}, implying that our merging algorithm is as fast as possible form=(logn)Ω(1). If we impose an additional stability condition requiring the elements of each input sequence to appear in the same order in the output sequence, the time complexity of the problem becomes Θ(logn), even form=2. Stable merging is thus harder than nonstable merging.  相似文献   

18.
We consider parallel heap operations on the exclusive-read exclusive-write parallel random-access machine. We first present an O(n/p + log p) time parallel algorithm to construct a heap of n elements using p processors, which is optimal for p θ(n/log n). We then propose a parallel root deletion algorithm. In a preparatory step, a data structure for dynamic processor allocation is constructed using O((n/log n)1 − 1/k) processors in O(log k) time for some constant k, 1 ≤ k ≤ ⌈log(n/log n)⌉. A sequence of root deletions can then be performed, each of which takes O((log n)/p + log p + log log n) time using p processors. Finally, we discuss a parallel algorithm running in O((log n)/p + log p) time for inserting an element into a heap, which is optimal for p = θ((log n)/log log n). Both deletion and insertion algorithms run in O(log log n) time when p = θ((log n)/log log n).  相似文献   

19.
Constructing normal bases of GF(qn) over GF (q) can be done by probabilistic methods as well as deterministic ones. In the following paper we consider only deterministic constructions. As far as we know, the best complexity for probabilistic algorithms is O(n2 log4n log2 (log n) + n log n log (log n) log q ) (see von zur Gathen and Shoup, 1992). For deterministic constructions, some prior ones, e.g. Lueneburg (1986), do not use the factorization of Xn - 1 over GF(q). As analysed by Bach, Driscoll and Shallit (1993), the best complexity (from Lueneburg, 1986) is O(n3 log n log(log n) + n2 log n log(log n) log q). For other deterministic constructions, which need such a factorization, the best complexities are O(n3,376 + n2 log n log(log n) log q) (von zur Gathen and Giesbrecht, 1990), or O(n3 log q); see Augot and Camion (1993). Here we propose a new deterministic construction that does not require the factorization of Xn - 1. Its complexity is reduced to O (n3 + n log n log(log n) log q ).  相似文献   

20.
We consider the following problem. For a binary tree T = (V, E) where V = {1, 2, ..., n}, given its inorder traversal and either its preorder or its postorder traversal, reconstruct the binary tree. We present a new parallel algorithm for this problem. Our algorithm requires O(n) space. The main idea of our algorithm is to reduce the reconstruction process to merging two sorted sequences. With the best parallel merging algorithms, our algorithm can be implemented in O(log log n) time using O(n/log log n) processors on the CREW PRAM (or in O(log n) time using O(n/log n) processors on the EREW PRAM). Our result provides one more example of a fundamental problem which can be solved by optimal parallel algorithms in O(log log n)time on the CREW PRAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号