首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a compact coplanar waveguide (CPW) fed ultra-wide band (UWB) multi input multi output (MIMO) antenna is proposed. The antenna consists of two antiparallel hexagonal ring monopole elements. Circular arcs shaped grounded stubs are used to enhance the isolation, both the arcs are connected through stub to make common ground. Tapering of the slots of CPW feed line at feed point, and grounded slots are introduced for impedance matching over UWB. The proposed antenna is fabricated and impedance bandwidth, isolation, radiation pattern, and gain are measured. Moreover, envelop correlation coefficient (ECC) results are given. Proposed antenna structure operates in the frequency range 3–12 GHz with a fractional bandwidth of 120% keeping isolation better than 15 dB. The antenna has a compact size of 45 × 25 mm2.  相似文献   

2.
An antenna design with four band rejection characteristics for UWB application is demonstrated. The proposed unique UWB antenna has shape of an embedded ellipse at top of trapezoidal patch (named as ellipzoidal), 50 Ω impedance microstrip line feed and a truncated beveled ground plane. To realize four band stop characteristics, three inverted U-shaped and a single I-shaped slots each of half guided wavelength are utilized on radiating element. The fabricated antenna has dimensions of 27 mm × 36 mm × 1.6 mm. This four band notched ellipzoidal UWB antenna has measured frequency bandwidth 2.8–14 GHz for magnitude of S11 < −10 dB level. The measured ellipzoidal antenna exhibits four band rejection characteristics for magnitude of S11 > −10 dB at 3.55 GHz for WiMAX band (3.26–3.9 GHz), 4.55 GHz for ARN band (4.35–5.05 GHz), 5.7 GHz for WLAN band (5.5–6.65 GHz) and 8.8 GHz for ITU-8 band (7.95–9.35 GHz). The proposed ellipzoidal UWB antenna maintains omnidirectional radiation pattern, gain, linear phase response, <1 ns group delay, and transfer function in the whole UWB operating bandwidth except at notched frequency bands.  相似文献   

3.
In this paper, a novel multiple slot loading technique is studied in detail for the isolation enhancement of the dual‐band MIMO antenna system. The proposed MIMO antenna design consists of the microstrip patch loaded with T‐shaped slots parallel to the non‐radiating edge of the patch. The frequency tuning could be achieved by varying the length of the T‐shape slot arm. The proposed MIMO antenna system is optimised for operation in WLAN and WiMAX applications. The isolation enhancement is achieved by providing simple multiple slots loaded in the ground plane between radiating elements. The length of the slots is λ/4 . The system is fabricated and tested using a vector network analyser and anechoic chamber. The reduction in mutual coupling up to ?29.16 dB and ?24.09 dB for the 2.4 GHz and 3.4 GHz, respectively, is achieved. The bandwidths are 62.3 MHz (3.33–3.39 GHz) and 55.5 MHz (2.37–2.42 GHz), respectively. The total gain obtained in this case is 1.8 dBi at 2.4 GHz and 1.2 dBi at 3.4 GHz, respectively. The dimensions of the proposed designed antenna are 70 mm × 60 mm × 1.6 mm. The results were also verified through mutual coupling parameters like envelope correlation coefficient (ECC) and channel capacity loss (CCL) at the desired frequencies.  相似文献   

4.
This article introduces a novel and groundbreaking approach combining multiple-input-multiple-output (MIMO) technology with radio frequency (RF) energy harvesting. The proposed antenna consists of two semi-circular monopole antenna components, optimized with dimensions of 89 × 51.02 × 1.6 mm3, that share a common ground plane to achieve MIMO characteristics. A series of split-ring resonators on the ground plane significantly enhances the isolation between the two radiating components. Band-notched features are performed in the 3.5 GHz WiMAX and 5.5 GHz WLAN bands through modified C-shaped slots in the radiating patch and two rectangular split-ring resonators serving as parasitic devices near the feed line. The reconfiguration of band-notching is made possible by controlling the modes of the embedded PIN diodes. The two antenna elements maintain mutual coupling below −18 dB from 1.5–13 GHz, achieving an impressive 158.62% impedance bandwidth. The antenna's efficiency and gain experience significant drop, indicating effective interference suppression at the center frequencies of the notch bands, and its performance in MIMO systems is assessed through parameters including envelope correlation coefficient, port isolation, radiation patterns, efficiency, gain, and diversity gain. The simulated properties of the designed antenna closely align with the measured outcomes, demonstrating its reliability and consistency. Moreover, the article evaluates the antenna's potential for RF energy harvesting, achieving a maximum harvested energy of 4.88 V. This proposed antenna can be used in multiple applications, like wideband, band-notching MIMO, and RF energy harvesting. This proposed antenna is an efficient, reconfigurable wideband MIMO antenna with novel RF energy harvesting capability.  相似文献   

5.
A small size neutralization line integrated flower-shaped MIMO antenna is designed and analyzed for sub-6 GHz type 5G NR frequency bands like n79 (4400–5000 MHz), n78 (3300–3800 MHz), n77 (3300–4200 MHz), and WLAN (5150–5825 MHz) applications. The novel approach of theory of characteristic mode analysis (TCMA) is introduced to provide physical insight of the designed structure and its characteristics behavior. Due to the suggested modifications in the geometry, the isolation among the patches is greatly increased. The overall miniaturized dimension of the MIMO antenna is 25 × 40 mm2. The edge-edge spacing among the elements is 0.0233λ. The prototype antenna is fabricated and measured that shows good agreement compared with simulated results. The designed MIMO antenna without the presence of decoupling structure offers an isolation of 28 dB, gain of 3.6 dBi, and radiation efficiency of 69.7% at the resonant frequency. The proposed MIMO antenna covers a broad range of frequency band from 3.296 to 5.962 GHz with −10 dB impedance bandwidth of 2666 MHz and maintains a good isolation of greater than 50 dB for the entire operating band. The tested radiation efficiency and gain are 85.3% and 6.22 dBi at 3.5 GHz. Moreover, the diversity parameters of the neutralization line integrated MIMO antenna, that is, channel capacity loss (CCL) isolation, mean effective gain (MEG), total active reflection coefficient (TARC) diversity gain (DG), and envelope correlation coefficient (ECC), are analyzed and discussed in this article.  相似文献   

6.

In this research work, a circularly polarized (CP) monopole antenna is designed for Ultra-Wideband (UWB) applications. The CP UWB antenna is be made up of a reformed ring patch and ground plane. The slots and stubs are inserted in the ground to achieve CP in the UWB antenna. This antenna attained an Axial Ratio Bandwidth (ARBW) of 5 GHz (4.0–9.0 GHz) that lies in the UWB frequency range that is from 3.1 to 10.6 GHz. The designed antenna has a radiation efficiency of around 80% for the complete UWB frequency range. The CP UWB antenna is designed and fabricated using the FR4 with a compact size of 32?×?30?×?1.6 mm3 and with a peak gain of 6.8 dBi. Tested results are in good resembles with simulated ones.

  相似文献   

7.
This research suggests a compact uniplanar multiple-input multiple-output (MIMO) with four ports for n79/n46/millimeter-wave (mm-wave) applications. The size of the quad MIMO is only 30 × 30 × 0.8 mm3. MIMO system consists of four identical Z-shaped radiators and common ground on the same plane and no decoupling structures are used for isolation. The system covers the bandwidth of 1.9 GHz (4.4–6.3 GHz) with a mid-frequency of 5.6 GHz and also covers the high-band frequencies ranging from 18 to 30 GHz with a bandwidth of 12 GHz. The suggested quad MIMO is fabricated on an FR-4 board, and the measured outcomes are well in line with the simulated results. An isolation value of −11 dB has been achieved for mid-band frequency and −24 dB has been attained for mm-wave bands. Through the value of DG = 10 dB, ECC < 0.07, TARC < −3 dB, MEG < −5 dB, and the ratio of MEG = 1 dB, uniplanar quad MIMO shows acceptable MIMO diversity performance. The entire system was evaluated for the users' hand specific absorption rate (SAR) impacts and is within the limits. After the complete analysis of the miniature quad MIMO antenna, an 8-port, and a 16-port uniplanar MIMO are simulated for smartphone-sized dielectric substrates and the performances were examined. The suggested MIMO system provides an efficient single-layer MIMO antenna to 5G smartphones with high bandwidth and low SAR. The proposed quad MIMO systems are suitable for both the sub-6 GHz band and the mm-wave band.  相似文献   

8.
The design of novel compact two-element and eight-element lotus shaped multiple-input-multiple-output (MIMO) antenna system employing pattern diversity with enhanced isolation characteristics is presented. The proposed two-element antenna system is arranged rotationally on a square-hollow substrate resulting in an eight-element MIMO antenna system employing pattern diversity. The developed eight-element MIMO antenna system resonates in the frequency range 3.1 to 14.6 GHz housing the complete UWB band with triple band-notch characteristics at 3.7–4.5 GHz (C-band satellite down link [3.7–4.2 GHz]), 5.1–5.9 GHz (WLAN) and 6.8–8.25 GHz (X-band satellite down link (7.25–7.75 GHz) and up link (7.9–8.4 GHz)) bands. The antenna system gives element-to-element isolation of more than 25 dB in the majority of the operating band with a peak gain of 6.8 dBi and a maximum 90% efficiency. The important MIMO metrics like ECC (envelope correlation coefficient), DG (diversity gain), total active reflection coefficient (TARC), channel capacity losses (CCL) and MEG (mean effective gain) are presented for both two-element and eight-element to estimate the performance the proposed antennas in multi-antenna environments. The both two- and eight-element designs are fabricated and the measured results of those are well agreed with simulation results.  相似文献   

9.
This paper proposes a miniature two-element Multiple Input Multiple Output (MIMO) antenna dedicated to UWB applications. The proposed MIMO design has a very low profile of 30 × 20 × 1.6 mm3. The proposed antenna is carefully designed and optimized using HFSS simulation software. As a proof of concept, the proposed design is realized and experimentally tested for MIMO applications. The proposed structure, printed on an FR4 substrate, comprises two symmetrical elliptical conductive patches on the upper side and a modified ground plane on the lower one. Each radiating element includes six elliptical rings. The modified ground plane consists of a T-shaped strip and two semielliptical slots etched opposite the feed line. All the parameters of the design are carefully optimized to achieve an ultrawide bandwidth antenna spanning from (136.08%) 3.1 to 16.3 GHz. The results are discussed and analyzed in terms of bandwidth, gain, efficiency, radiation pattern, diversity gain, envelope correlation coefficient (ECC), total active reflection coefficient (TARC), and mean effective gain (MEG). All simulated results are found to be in good accordance with experiments. The design reveals attractive features for UWB applications. A good isolation (17 dB) between the two radiators is achieved despite the close proximity using the suggested ground plane geometry.  相似文献   

10.
This paper presents compact size 4 × 4 cm2 MIMO antenna for UWB applications. The proposed antenna consists of four symmetric circular elements printed on low cost FR4 substrate with partial slotted ground plane. The two sides of the substrate are symmetric and each side is consisting of two radiators with the partial ground planes associated to the two other elements mounted on the other side. The two elements of the front side are orthogonal to the two other elements of the back side in order to increase the isolation between elements. For further reduction in the mutual coupling between elements, decoupling structures are presented in the top and bottom layers of the substrate. The simulated and measured results are investigated to study the effectiveness of the MIMO-UWB antenna. The results demonstrate the satisfactory performance of MIMO-UWB antenna, which has a return loss less than −10 dB from approximately 3.1 GHz to more than 11 GHz with an insertion loss lower than −20 dB through the achieved frequency band, and a correlation less than 0.002. Moreover, the proposed MIMO model exhibits a nearly omni-directional radiation pattern with almost constant gain of average value 3.28 dBi.  相似文献   

11.
A Y-shaped ultra-wideband (UWB) monopole antenna containing modified ground plane with five stop bands is presented. An inverted U-shaped slot and a C-shaped slot are placed on Y-shaped radiating patch to achieve two notched bands while three pairs of C-shaped slots are placed at different positions on modified ground plane to achieve three more notched bands. The proposed antenna is designed, fabricated and experimentally tested. The designed Y-shaped antenna has overall dimensions of 36 × 38 × 1.6 mm3 (0.34λl × 0.36 λl × 0.016 λl) and has impedance bandwidth 2.86–13.3 GHz at |S11| < −10 dB level. Measured band notches are achieved at 3.75/5.43/7.87/8.62/9.87 GHz centre notched frequencies to eliminate worldwide interoperability for microwave access (WiMAX) band (3.45–4.0 GHz), wireless local area network (WLAN) band (5.15–5.90 GHz), X-band for satellite communication (6.77–8.00 GHz), ITU-8 band (8.3–9.1 GHz), and radio navigation (RN) band (9.3–10.6 GHz), respectively. Variation of slot parameter on individual band notch is also investigated. Omnidirectional radiation pattern for XZ-plane and dipole-like radiation pattern for YZ-plane are observed. Stable gain, variation of phase response in linear fashion and group delay <1.3 ns for whole ultra-wideband except at band notches is achieved.  相似文献   

12.
Triple band-rejection MIMO/Diversity UWB antenna characteristics are described in this paper. Proposed antenna discards worldwide interoperability for microwave access WiMAX band from 3.3 to 3.6 GHz, wireless local area network WLAN band from 5 to 6 GHz and X-Band satellite downlink communication band from 7.1 to 7.9 GHz. Mushroom Electromagnetic Band Gap (EBG) structures helps to attain band notches in WiMAX and WLAN bands. Uniplanar plus shaped EBG structure is used for notch in X-band downlink satellite communication band. Decoupling strips and slotted ground plane are employed to develop the isolation among two closely spaced UWB monopoles. The individual monopoles are 90° angularly separated with stepped structure which helps to reduce mutual coupling and also contributes towards impedance matching by increasing current path length. Mutual coupling magnitude of more than 15 dB is found over whole UWB frequency range. The Envelope Correlation Coefficient is less than 0.02 over whole UWB frequency range.The variations in the notched frequency with the variations in mushroom EBG structure parameters are investigated.The antenna has been designed using FR-4 substrate and overall dimensions is (64 × 45 × 1.6) mm3.  相似文献   

13.
In this paper, a super-wideband (SWB) printed monopole antenna has been designed and manufactured. The measured frequency band in terms of reflection coefficient is from 3.1 to 20 GHz under a −10 dB criteria, thanks to the inclusion of a taper impedance adapter. This single antenna has been used to implement and analyze several MIMO antenna configurations, where the isolation between the compounding elements has been checked and optimized to improve the Envelope Correlation Coefficient. Two elements MIMO configurations (parallel ports or orthogonal diversity), as well as four element MIMO antennas with parallel ports are presented. Non continuous ground planes of the MIMO antenna elements with the inclusion of L shaped thin strips are proposed as valid structures to significantly improve the side by side mutual coupling from an initial peak value of 15 dB to better than 24 dB within the entire frequency band. In all the presented MIMO antenna structures, the measured values demonstrate good performance up to 20 GHz, both in reflection and isolation. Nevertheless, the influence of the mutual coupling effects has been checked as more significant in the lower part of the frequency band, especially in the 4 element MIMO configuration. The inclusion of the L shaped strips in the ground plane significantly mitigates this effect. Although the antennas have only been measured up to 20 GHz (upper frequency limit of the laboratory Vector Network Analyzer), simulations show satisfactory antennas’ performance up to 50 GHz.  相似文献   

14.
In this paper, we propose a dual‐band multiple‐input multiple‐output (MIMO) antenna with high isolation for WLAN applications (2.45 GHz and 5.2 GHz). The proposed antenna is composed of a mobile communication terminal board, eight radiators, a coaxial feed line, and slots for isolation. The measured ?10 dB impedance bandwidths are 10.1% (2.35 GHz to 2.6 GHz) and 3.85% (5.1 GHz to 5.3 GHz) at each frequency band. The proposed four‐element MIMO antenna has an isolation of better than 35 dB at 2.45 GHz and 45 dB at 5.2 GHz between each element. The antenna gain is 3.2 dBi at 2.45 GHz and 4.2 dBi at 5.2 GHz.  相似文献   

15.
提出了一种紧凑、高性能、形状新颖的具有高隔离度的超宽带多输入多输出(ultra-wideband multiple-input multiple-output, UWB-MIMO)天线.天线由两个圆形辐射元件组成,享有共同的类F形接地平面,尺寸为30 mm×18 mm.在天线的接地平面中引入类F形短截线,在MIMO天线元件之间产生高度隔离.所设计的UWB-MIMO天线具有极低耦合(S21<-22 dB)、低包络相关系数(ECC<0.003)、高分集增益(DG>9.98 dB),适用于便携式通信设备.  相似文献   

16.
In this literature, a compact planar triple-band multiple input multiple output (MIMO) antenna with two monopole elements is presented. Each element includes a defective complementary open-loop resonator (COLR), two slots on both sides of the feedline, two stepped stubs and a monopole ground plane. This structure operates in the frequency bands of 2.22–2.54 GHz, 3.14–3.9 GHz and 5.3–5.7 GHz for WiFi, WiMAX and WLAN applications, respectively. The antenna is not based on a common ground plane, so antenna is low cost and compact. High measured isolation is achieved which is better than 34 dB in all operating bands without using additional decoupling structure. An equivalent circuit model is proposed to investigate the behaviour of the antenna. The envelope correlation coefficient of antenna is less than 0.001 and diversity gain is about 10. The proposed MIMO antenna is fabricated and there is a good agreement between the experimental measurements with the simulation results.  相似文献   

17.
ABSTRACT

A compact planar Ultrawideband (UWB) monopole antenna with quadruple band notch characteristics is proposed. The proposed antenna consists of a notched rectangular radiating patch with a 50 Ω microstrip feed line, and a defected ground plane. The quadruple band notched functions are achieved by utilising two inverted U-shaped slots, a symmetrical split ring resonator pair (SSRRP) and a via hole. The fabricated antenna has a compact size of 24 mm × 30 mm × 1.6 mm with an impedance bandwidth ranging from 2.86 to 12.2 GHz for magnitude of S11 < ?10 dB. The four band notched characteristics of proposed antenna are in the WiMAX (worldwide interoperability for microwave access) band (3.25–3.55 GHz), C band (3.7–4.2 GHz), WLAN (wireless local area network) band (5.2–5.9 GHz) and the downlink frequency band of X band (7–7.8 GHz) for satellite communication are obtained. The measured and simulation results of proposed antenna are in good agreement to achieve impedance matching, stable radiation patterns, constant gain and group delay over the operating bandwidth.  相似文献   

18.
A novel compact microstrip-fed UWB antenna with quad notched band is proposed. The antenna consists of a rectangular radiating patch with a half circle, a tapered microstrip feed-line, and a semi-elliptical ground plane. With a pair of L-shaped slots, complementary co-directional SRR and a pair of C-shaped stubs, four notched bands are created to prevent interference from WiMAX/lower WLAN/higher WLAN/X-band. Experimental results show that the designed antenna, with compact size of 20 × 30 mm2, has an ultrawide band (VSWR < 2) from 2.68 to 13 GHz, except four notched bands of 3.13–3.8, 4.87–5.52, 5.65–6.1, 7.12–8 GHz. Good radiation patterns and stable gain within the operating band have been observed.  相似文献   

19.
设计了一款微带馈电的超宽带缝隙天线,整体尺寸仅有30 mm×30 mm×1.6 mm,在3.08~11 GHz范围内驻波比小于2,可覆盖超宽带频段.为了实现对WiMAX和WLAN频段的陷波,分别在地板和馈线上蚀刻不同缝隙,仿真结果表明:在3.2~3.7 GHz,5 ~5.9 GHz驻波比大于2,增益显著下降,而在通带内仍然保持良好的全向辐射特性和稳定的增益.该天线结构简单、性能优良,能广泛应用于超宽带通信系统中.  相似文献   

20.
提出了一种小型二端口超宽带(UWB)多输入多输出(MIMO)天线。该天线由两个相同的矩形单极子和缺陷地结构(DGS)组成,通过改进阶梯形微带馈电线,在介质基板底层和顶层添加H 形枝节,并在辐射贴片上添加矩形条,提高了天线的带宽和隔离度。实验结果表明:该天线在1~20 GHz 工作频带内的隔离度大于21 dB,包络相关系数小于0.02。实测与仿真结果相符,表明该天线适用于UWB MIMO 系统,且该天线结构紧凑,尺寸仅为22 mm×29 mm×0.8 mm,可用于便携式通信设备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号